PyTorch Deep Learning Hands-On (eBook)

Build CNNs, RNNs, GANs, reinforcement learning, and more, quickly and easily
eBook Download: EPUB
2019
250 Seiten
Packt Publishing (Verlag)
978-1-78883-343-1 (ISBN)

Lese- und Medienproben

PyTorch Deep Learning Hands-On - Sherin Thomas, Sudhanshu Passi
35,37 € inkl. MwSt
Systemvoraussetzungen
36,59 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch




Key Features



  • Internals and principles of PyTorch


  • Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more


  • Build deep learning workflows and take deep learning models from prototyping to production



Book Description



PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.







PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.







Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.







This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.




What you will learn



Use PyTorch to build:








  • Simple Neural Networks - build neural networks the PyTorch way, with high-level functions, optimizers, and more


  • Convolutional Neural Networks - create advanced computer vision systems


  • Recurrent Neural Networks - work with sequential data such as natural language and audio


  • Generative Adversarial Networks - create new content with models including SimpleGAN and CycleGAN


  • Reinforcement Learning - develop systems that can solve complex problems such as driving or game playing


  • Deep Learning workflows - move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages


  • Production-ready models - package your models for high-performance production environments



Who this book is for



Machine learning engineers who want to put PyTorch to work.


Hands-on projects cover all the key deep learning methods built step-by-step in PyTorchKey FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook DescriptionPyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.What you will learnUse PyTorch to build:Simple Neural Networks - build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks - create advanced computer vision systemsRecurrent Neural Networks - work with sequential data such as natural language and audioGenerative Adversarial Networks - create new content with models including SimpleGAN and CycleGANReinforcement Learning - develop systems that can solve complex problems such as driving or game playingDeep Learning workflows - move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models - package your models for high-performance production environmentsWho this book is forMachine learning engineers who want to put PyTorch to work.
Erscheint lt. Verlag 30.4.2019
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Deep learning • machine learning • Python • PyTorch • Torch
ISBN-10 1-78883-343-0 / 1788833430
ISBN-13 978-1-78883-343-1 / 9781788833431
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 9,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43