PyTorch Deep Learning Hands-On (eBook)
250 Seiten
Packt Publishing (Verlag)
978-1-78883-343-1 (ISBN)
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch
Key Features
- Internals and principles of PyTorch
- Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more
- Build deep learning workflows and take deep learning models from prototyping to production
Book Description
PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.
PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.
Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.
This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.
What you will learn
Use PyTorch to build:
- Simple Neural Networks - build neural networks the PyTorch way, with high-level functions, optimizers, and more
- Convolutional Neural Networks - create advanced computer vision systems
- Recurrent Neural Networks - work with sequential data such as natural language and audio
- Generative Adversarial Networks - create new content with models including SimpleGAN and CycleGAN
- Reinforcement Learning - develop systems that can solve complex problems such as driving or game playing
- Deep Learning workflows - move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages
- Production-ready models - package your models for high-performance production environments
Who this book is for
Machine learning engineers who want to put PyTorch to work.
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorchKey FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook DescriptionPyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.What you will learnUse PyTorch to build:Simple Neural Networks - build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks - create advanced computer vision systemsRecurrent Neural Networks - work with sequential data such as natural language and audioGenerative Adversarial Networks - create new content with models including SimpleGAN and CycleGANReinforcement Learning - develop systems that can solve complex problems such as driving or game playingDeep Learning workflows - move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models - package your models for high-performance production environmentsWho this book is forMachine learning engineers who want to put PyTorch to work.
Erscheint lt. Verlag | 30.4.2019 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Schlagworte | Artificial Intelligence • Deep learning • machine learning • Python • PyTorch • Torch |
ISBN-10 | 1-78883-343-0 / 1788833430 |
ISBN-13 | 978-1-78883-343-1 / 9781788833431 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich