Information Algebras - Juerg Kohlas

Information Algebras

Generic Structures For Inference

(Autor)

Buch | Softcover
265 Seiten
2002 | Softcover reprint of the original 1st ed. 2003
Springer London Ltd (Verlag)
978-1-85233-689-9 (ISBN)
128,39 inkl. MwSt
Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras.
Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence.

1 Introduction.- 2 Valuation Algebras.- 2.1 The Framework.- 2.2 Axioms.- 2.3 Examples of Valuation Algebras.- 2.4 Partial Marginalization.- 3 Algebraic Theory.- 3.1 Congruences.- 3.2 Domain-Free Valuation Algebras.- 3.3 Subalgebras, Homomorphisms.- 3.4 Null Valuations.- 3.5 Regular Valuation Algebras.- 3.6 Separative Valuation Algebras.- 3.7 Scaled Valuation Algebras.- 4 Local Computation.- 4.1 Fusion Algorithm.- 4.2 Collect Algorithm.- 4.3 Computing Multiple Marginals.- 4.4 Architectures with Division.- 4.5 Computations in Valuation Algebras with Partial Marginalization.- 4.6 Scaling and Updating.- 5 Conditional Independence.- 5.1 Factorization and Graphical Models.- 5.2 Conditionals in Regular Algebras.- 5.3 Conditionals in Separative Algebras.- 6 Information Algebras.- 6.1 Idempotency.- 6.2 Partial Order of Information.- 6.3 File Systems.- 6.4 Information Systems.- 6.5 Examples.- 6.6 Compact Systems.- 6.7 Mappings.- 7 Uncertain Information.- 7.1 Algebra of Random Variables.- 7.2 Probabilistic Argumentation Systems.- 7.3 Allocations of Probability.- 7.4 Independent Sources.- References.

Erscheint lt. Verlag 5.12.2002
Reihe/Serie Discrete Mathematics and Theoretical Computer Science
Zusatzinfo X, 265 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-85233-689-7 / 1852336897
ISBN-13 978-1-85233-689-9 / 9781852336899
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich