Lineare Modelle
Physica (Verlag)
978-3-7908-1519-1 (ISBN)
Helge Toutenburg studierte (1961-1966) und promovierte (1969) in Berlin, habilitierte in Dortmund (1989). Er ist seit 1991 Professor für Statistik an der Ludwig-Maximilians-Universität München.
1. Einleitung.- 2. Beziehungen zwischen zwei Variablen.- 2.1 Einleitung-Beispiele.- 2.2 Darstellung der Verteilung zweidimensionaler Merkmale.- 2.3 Maßzahlen für den Zusammenhang zweier nominaler Merkmale.- 2.4 Rangkorrelationskoeffizient von Spearman.- 2.5 Zusammenhang zwischen zwei stetigen Merkmalen.- 3. Deskriptive univariate lineare Regression.- 3.1 Einleitung.- 3.2 Plots und Hypothesen.- 3.3 Prinzip der kleinsten Quadrate.- 3.4 Güte der Anpassung.- 3.5 Residualanalyse.- 3.6 Lineare Transformation der Originaldaten.- 3.7 Multiple lineare Regression und nichtlineare Regression.- 3.8 Polynomiale Regression.- 3.9 Lineare Regression mit kategorialen Regressoren.- 3.10 Spezielle nichtlineare Modelle.- 3.11 Zeitreihen.- 4. Das klassische multiple lineare Regressionsmodell.- 4.1 Deskriptive multiple lineare Regression.- 4.2 Prinzip der kleinsten Quadrate.- 4.3 Geometrische Eigenschaften der Kleinste-Quadrat-Schätzung.- 4.4 Beste lineare erwartungstreue Schätzung.- 4.5 Multikollinearität.- 4.6 Ökonometrische Gleichungen vom Regressionstyp.- 4.7 Klassische Normalregression.- 4.8 Prüfen von linearen Hypothesen.- 4.9 Varianzanalyse und Güte der Anpassung.- 4.10 Tests auf Parameterkonstanz.- 4.11 Die kanonische Form.- 4.12 Methoden zur Überwindung von Multikollinearität.- 4.13 Minimax-Schätzung.- 5. Modelle der Varianzanalyse.- 5.1 Varianzanalyse als spezielles lineares Modell.- 5.2 Einfaktorielle Varianzanalyse.- 5.3 Vergleich von einzelnen Mittelwerten.- 5.4 Multiple Vergleiche.- 5.5 Rangvarianzanalyse im vollständig randomisiertenVersuchsplan.- 5.6 Zwei- und Mehrfaktorielle Varianzanalyse.- 5.7 Zweifaktorielle Experimente mit Wechselwirkung (Modell mitfesten Effekten).- 5.8 Zweifaktorielles Experiment in Effektkodierung.- 5.9 2k-faktoriellesExperiment.- 6. Exakte und stochastische lineare Restriktionen.- 6.1 Verwendung von Zusatzinformation.- 6.2 Die restriktive KQ-Schätzung.- 6.3 Schrittweise Einbeziehung von exakten linearen Restriktionen.- 6.4 Verzerrte lineare Restriktionen und MSE-Vergleich mit derKQS.- 6.5 MSE-Matrix-Vergleiche zwischen zwei verzerrten Schätzern.- 6.6 MSE-Matrix-Vergleich zwischen zwei linearen verzerrtenSchätzern.- 6.7 MSE-Vergleich zweier (verzerrter) restriktiver Schätzer.- 6.8 Stochastische lineare Restriktionen.- 6.9 Abgeschwächte lineare Restriktionen.- 7. Das verallgemeinerte lineare Regressionsmodell.- 7.1 Einleitung.- 7.2 Optimale lineare Schätzungen von,Q.- 7.3 Aitken-Schätzung.- 7.4 Fehlspezifikation der Kovarianzmatrix.- 7.5 Heteroskedastie und Autoregression.- 8. Vorhersage von y im verallgemeinerten Regressionsmodell.- 8.1 Das Vorhersagemodell.- 8.2 Optimale inhomogene Vorhersage.- 8.3 Optimale homogene Vorhersagen.- 8.4 MSE-Matrix-Vergleiche zwischen optimalen und klassischenVorhersagen.- 8.5 Vorhersagebereiche.- 9. Sensitivitätsanalyse.- 9.1 Die Prediction-Matrix.- 9.2 Einfluss einer Beobachtung auf die Parameterschätzung.- 9.3 Grafische Methoden zum Prüfen von Modellannahmen.- 9.4 Maße auf der Basis des Konfidenzellipsoids.- 10. Modelle für kategoriale Responsevariablen.- 10.1 Generalisierte lineare Modelle.- 10.2 Kontingenztafeln.- 10.3 GLM für Binären Response.- 10.4 Logitmodelle für kategoriale Daten.- 10.5 Güte der Anpassung-Likelihood-Quotienten Test.- 10.6 Loglineare Modelle für Kategoriale Variablen.- 10.7 Der Spezialfall binärer Responsevariablen.- 10.8 Kodierung kategorialer Kovariablen.- 10.9 Erweiterungen für abhängige binäre Variablen.- 11. Regression bei unvollständigen Daten.- 11.1 Statistische Methodenbei fehlenden Daten.- 11.2 Missing-Data-Mechanismen.- 11.3 Fehlend-Muster.- 11.4 Fehlende Daten im Response.- 11.5 Fehlende Werte in der X-Matrix.- 11.6 Standardverfahren bei unvollständiger X-Matrix.- 11.7 Imputationsmethoden für unvollständige X-Matrizen.- 11.8 Annahmen über den Fehlend-Mechanismus.- 11.9 Regressionsdiagnostik zur Identifizierung von Nicht-MCAR Prozessen.- 11.10 Behandlung von nichtignorierbarem Nichtresponse.- 11.11 Weitere Literatur.- A. Matrixalgebra.- A.1 Einführung.- A.2 Spur einer Matrix.- A.3 Determinanten.- A.4 Inverse.- A.5 Orthogonale Matrizen.- A.6 Rang einer Matrix.- A.7 Spalten-und Nullraum.- A.8 Eigenwerte und Eigenvektoren.- A.9 Zerlegung von Matrizen (Produktdarstellungen).- A.10 Definite Matrizen und quadratische Formen.- A.11 Idempotente Matrizen.- A.12 Verallgemeinerte Inverse.- A.13 Projektoren.- A.14 Funktionen normalverteilter Variablen.- A.15 Differentiation von skalaren Funktionen von Matrizen.- A.16 Stochastische Konvergenz.- B. Tabellenanhang.- B.1 Verteilungsfunktion ?(z) der StandardnormalverteilungN(0,1).- B.2 Dichtefunktion ø(z) der N(0,1)-Verteilung.
Erscheint lt. Verlag | 18.9.2002 |
---|---|
Zusatzinfo | XVIII, 562 S. 2 Abb. |
Verlagsort | Heidelberg |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 860 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | Codierung • einfaktorielle Varianzanalyse • Generalisierte Lineare Modelle • komplexe Ursache-Wirkungs-Beziehungen • Kontingenztafel • Korrelation • Korrelationskoeffizient • Kovarianzmatrix • Lineare Modelle • Lineares Modell • Lineares Modelles • Matrixtheorie • Mittelwert • Modelle für kategorialen Response • Modellprüfung und -diagnostik • Nichtlineare Modelle • Normalverteilung • Parameterschätzung • Produkt-Moment-Korrelation • Trennfunktion • Varianz • Varianzanalyse |
ISBN-10 | 3-7908-1519-5 / 3790815195 |
ISBN-13 | 978-3-7908-1519-1 / 9783790815191 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich