Fractal Dimension for Fractal Structures (eBook)

With Applications to Finance
eBook Download: PDF
2019 | 1st ed. 2019
XVII, 204 Seiten
Springer International Publishing (Verlag)
978-3-030-16645-8 (ISBN)

Lese- und Medienproben

Fractal Dimension for Fractal Structures - Manuel Fernández-Martínez, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, Juan Evangelista Trinidad Segovia
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts.

In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.

This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.



Manuel Fernández-Martínez holds an international PhD in Mathematics from UCLA. His research interests include fractal structures, fractal dimension, self-similar sets, computational applications of fractal dimension, and self-similar processes and their applications to finance.

Miguel Ángel Sánchez-Granero is an Associate Professor at the Department of Mathematics, University of Almería, Spain. He is the author of a number of publications in international journals on asymmetric topology, self-similarity, fractal structures, and fractal dimension with application to financial series.

Juan E. Trinidad Segovia, PhD, is a Full Professor of Finances at the Department of Economics and Business, University of Almería, Spain. His research interests include financial modelling, portfolio selection, CAPM and, most recently, applications of Statistical Mechanics to financial markets. He has published over 20 papers in peer-reviewed journals.

Juan Luis García Guirao is a Full Professor of Applied Mathematics at the Technical University of Cartagena, Spain. In 2011, at the age of 33, he became Spain's youngest Full Professor of Mathematics. The author of more than 100 research papers and Editor in Chief of Applied Mathematics and Nonlinear Sciences, his work has been recognised with the 2017 NSP award for researchers younger than 40 years old, and with the 2017 JDEA best paper award. 

Erscheint lt. Verlag 23.4.2019
Reihe/Serie SEMA SIMAI Springer Series
SEMA SIMAI Springer Series
Zusatzinfo XVII, 204 p. 31 illus., 25 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik Statistik
Schlagworte Fractal • fractal dimension • fractal structure • Hausdorff dimension • Hurst exponent
ISBN-10 3-030-16645-7 / 3030166457
ISBN-13 978-3-030-16645-8 / 9783030166458
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
31,43
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

eBook Download (2024)
De Gruyter (Verlag)
64,95