Deep Reinforcement Learning
Springer Verlag, Singapore
978-981-13-8284-0 (ISBN)
This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.
Mr. Sewak has been the Lead Data Scientist/Analytics Architect for a number of important international AI/DL/ML software and industry solutions and has also been involved in providing solutions and research for a series of cognitive features for IBM Watson Commerce. He has 14 years of experience working as a solutions architect using technologies like TensorFlow, Torch, Caffe, Theano, Keras, Open AI, SpaCy, Gensim, NLTK, Watson, SPSS, Spark, H2O, Kafka, ES, and others.
Introduction to Reinforcement Learning.- Mathematical and Algorithmic understanding of Reinforcement Learning.- Coding the Environment and MDP Solution.- Temporal Difference Learning, SARSA, and Q Learning.- Q Learning in Code.- Introduction to Deep Learning.- Implementation Resources.- Deep Q Network (DQN), Double DQN and Dueling DQN.- Double DQN in Code.- Policy-Based Reinforcement Learning Approaches.- Actor-Critic Models & the A3C.- A3C in Code.- Deterministic Policy Gradient and the DDPG.- DDPG in Code.
Erscheinungsdatum | 24.07.2019 |
---|---|
Zusatzinfo | 98 Illustrations, color; 8 Illustrations, black and white; XVII, 203 p. 106 illus., 98 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | A3C • Actor-Critic • AI agents • Alpha-Go • Artificial Intelligence • Attention Mechanism • Deep learning • Deep Mind • Deep Q Learning • Dynamic Programming • Hard Attention • Monte Carlo • Recurrent Attention Model • Reinforcement Learning • Sarsa • TD Lambda • temporal difference learning |
ISBN-10 | 981-13-8284-0 / 9811382840 |
ISBN-13 | 978-981-13-8284-0 / 9789811382840 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich