Deep Reinforcement Learning - Mohit Sewak

Deep Reinforcement Learning

Frontiers of Artificial Intelligence

(Autor)

Buch | Hardcover
203 Seiten
2019 | 1st ed. 2019
Springer Verlag, Singapore
978-981-13-8284-0 (ISBN)
171,19 inkl. MwSt
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code.



This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.

Mr. Sewak has been the Lead Data Scientist/Analytics Architect for a number of important international AI/DL/ML software and industry solutions and has also been involved in providing solutions and research for a series of cognitive features for IBM Watson Commerce. He has 14 years of experience working as a solutions architect using technologies like TensorFlow, Torch, Caffe, Theano, Keras, Open AI, SpaCy, Gensim, NLTK, Watson, SPSS, Spark, H2O, Kafka, ES, and others.

Introduction to Reinforcement Learning.- Mathematical and Algorithmic understanding of Reinforcement Learning.- Coding the Environment and MDP Solution.- Temporal Difference Learning, SARSA, and Q Learning.- Q Learning in Code.- Introduction to Deep Learning.- Implementation Resources.- Deep Q Network (DQN), Double DQN and Dueling DQN.- Double DQN in Code.- Policy-Based Reinforcement Learning Approaches.- Actor-Critic Models & the A3C.- A3C in Code.- Deterministic Policy Gradient and the DDPG.- DDPG in Code.

Erscheinungsdatum
Zusatzinfo 98 Illustrations, color; 8 Illustrations, black and white; XVII, 203 p. 106 illus., 98 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte A3C • Actor-Critic • AI agents • Alpha-Go • Artificial Intelligence • Attention Mechanism • Deep learning • Deep Mind • Deep Q Learning • Dynamic Programming • Hard Attention • Monte Carlo • Recurrent Attention Model • Reinforcement Learning • Sarsa • TD Lambda • temporal difference learning
ISBN-10 981-13-8284-0 / 9811382840
ISBN-13 978-981-13-8284-0 / 9789811382840
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99