Machine Learning for Cyber Physical Systems (eBook)
VII, 87 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-59084-3 (ISBN)
The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 25th-26th, 2017.
Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.
Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB.
Dr. Alexander Maier is head of group Machine Learning at Fraunhofer IOSB-INA. His focus is on the development of algorithms for big data applications in Cyber-Physical Systems (diagnostics, optimization, predictive maintenance) and the transfer of research results to industry.
Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo.
Erscheint lt. Verlag | 9.4.2019 |
---|---|
Reihe/Serie | Technologien für die intelligente Automation | Technologien für die intelligente Automation |
Zusatzinfo | VII, 87 p. 1 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Technik ► Nachrichtentechnik | |
Schlagworte | Artificial Intelligence • Big Data • Cognitive Robotics • Computational Intelligence • Computer-based algorithms • Cyber-Physical Systems • Data Mining • internet of things • machine learning • Smart Grid |
ISBN-10 | 3-662-59084-0 / 3662590840 |
ISBN-13 | 978-3-662-59084-3 / 9783662590843 |
Haben Sie eine Frage zum Produkt? |
Größe: 25,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich