Data Science Using Python and R (eBook)
256 Seiten
John Wiley & Sons (Verlag)
978-1-119-52684-1 (ISBN)
Data Science Using Python and R will get you plugged into the world's two most widespread open-source platforms for data science: Python and R.
Data science is hot. Bloomberg called data scientist "the hottest job in America." Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques.
Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R.
Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining.
Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars.
Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
CHANTAL D. LAROSE, PHD, is an Assistant Professor of Statistics & Data Science at Eastern Connecticut State University (ECSU). She has co-authored three books on data science and predictive analytics and helped develop data science programs at ECSU and SUNY New Paltz. Her PhD dissertation, Model-Based Clustering of Incomplete Data, tackles the persistent problem of trying to do data science with incomplete data. DANIEL T. LAROSE, PHD, is a Professor of Data Science and Statistics and Director of the Data Science programs at Central Connecticut State University. He has published many books on data science, data mining, predictive analytics, and statistics. His consulting clients include The Economist magazine, Forbes Magazine, the CIT Group, and Microsoft.
Erscheint lt. Verlag | 21.3.2019 |
---|---|
Reihe/Serie | Wiley Series on Methods and Applications in Data Mining | Wiley Series on Methods and Applications in Data Mining |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Office Programme ► Outlook | |
Schlagworte | Computer-Ratgeber • Computer Science • Data Analysis • Database software (Non-Microsoft) • Data Mining & Knowledge Discovery • Data Mining u. Knowledge Discovery • Datenanalyse • Datenbanken (außer Microsoft) • End-User Computing • Informatik • Python (Programmiersprache) • R (Programm) • Statistics • Statistik |
ISBN-10 | 1-119-52684-1 / 1119526841 |
ISBN-13 | 978-1-119-52684-1 / 9781119526841 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 15,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich