Computational Aspects of Polynomial Identities
Seiten
2005
A K Peters (Verlag)
978-1-56881-163-5 (ISBN)
A K Peters (Verlag)
978-1-56881-163-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This book introduces polynomial identity (PI)-algebras and reviews some well-known results and techniques, most of which are associated with the structure theory. It presents a full proof of Kemer's solution to Specht's conjecture.
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. The "best" proofs of classical results, such as the existence of central polynomials, the tensor product theorem, the nilpotence of the radical of an affine PI-algebra, Shirshov's theorem, and characterization of group algebras with PI, are presented.
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. The "best" proofs of classical results, such as the existence of central polynomials, the tensor product theorem, the nilpotence of the radical of an affine PI-algebra, Shirshov's theorem, and characterization of group algebras with PI, are presented.
Kanel-Belov, Alexei; Rowen, Louis Halle
1. Basic Results 2. Affine Pl-algebras 3. T-ldeals and Relatively Free Algebras 4. Specht's Problem in the Affine Case 5. Representations of Sn and Their Applications 6. Superidentities and Kemer's Main Theorem 7. Pi-Algebras in Characteristic p 8. Recent Structural Results 9. Poincare-Hilbert Series and Gelfand-Kirillov Dimension 10. More Representation Theory 11. Unified Theory of Identities 12. Trace Identities 13. Exercises 14. Lists of Theorems and Examples 15. Some Open Questions
Erscheint lt. Verlag | 22.2.2005 |
---|---|
Reihe/Serie | Research Notes in Mathematics ; Vol.9 |
Verlagsort | Natick |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 900 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 1-56881-163-2 / 1568811632 |
ISBN-13 | 978-1-56881-163-5 / 9781568811635 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €