Road Terrain Classification Technology for Autonomous Vehicle - Shifeng Wang

Road Terrain Classification Technology for Autonomous Vehicle (eBook)

(Autor)

eBook Download: PDF
2019 | 1st ed. 2019
XVI, 97 Seiten
Springer Singapore (Verlag)
978-981-13-6155-5 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors' classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible. 

Shifeng Wang has double doctoral degrees. He received Eng. D. from Changchun University of science and technology in 2008, later on he received Ph.D. from University of Technology Sydney in 2013. He is an associate Professor at Key Laboratory of Optoelectronic Measurement and Optical Information Transmission Technology of Ministry of Education, National Demonstration Center for Experimental Optoelectronic Engineering Education, School of Optoelectronic Engineering, Changchun University of Science and Technology. He majored in Robot Science and Artificial Intelligence. He undertook many major research projects in China and Austrlia. From 2010-2013, he is in charge of the 'An Instrumented Vehicle for Research on Safe Driving Project' and the 'Human-Machine Interaction for Driving Assistant System Project', both financial aided by the Australia government. He has been granted 6 invention patents and applied another 8 ones related to the autonomous vehicle and published more than 20 technical papers. This book is finically supported by the project of Natural Science Foundation of Jilin Province (20150101047JC), China. 
This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors' classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible. 

Shifeng Wang has double doctoral degrees. He received Eng. D. from Changchun University of science and technology in 2008, later on he received Ph.D. from University of Technology Sydney in 2013. He is an associate Professor at Key Laboratory of Optoelectronic Measurement and Optical Information Transmission Technology of Ministry of Education, National Demonstration Center for Experimental Optoelectronic Engineering Education, School of Optoelectronic Engineering, Changchun University of Science and Technology. He majored in Robot Science and Artificial Intelligence. He undertook many major research projects in China and Austrlia. From 2010-2013, he is in charge of the "An Instrumented Vehicle for Research on Safe Driving Project" and the "Human-Machine Interaction for Driving Assistant System Project", both financial aided by the Australia government. He has been granted 6 invention patents and applied another 8 ones related to the autonomous vehicle and published more than 20 technical papers. This book is finically supported by the project of Natural Science Foundation of Jilin Province (20150101047JC), China. 

Introduction.- Review of Related Work.- Acceleration Based Road Terrain Classification.- Image Based Road Terrain Classification.- LRF Based Road Terrain Classification.- Multiple-Sensor Based Road Terrain Classification.- Conclusion and Future Direction.

Erscheint lt. Verlag 15.3.2019
Reihe/Serie Unmanned System Technologies
Unmanned System Technologies
Zusatzinfo XVI, 97 p. 43 illus., 32 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Fast Fourier transform • Grey-Level Co-occurrence Matrix • Laser Range Finder • markov random field • Mutiple Sensor • Power Spectral Density • Principal Component Analysis • Support Vector Machine
ISBN-10 981-13-6155-X / 981136155X
ISBN-13 978-981-13-6155-5 / 9789811361555
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99