Beginning Machine Learning in iOS (eBook)
XI, 157 Seiten
Apress (Verlag)
978-1-4842-4297-1 (ISBN)
- Understand the CoreML components
- Train custom models
- Implement GPU processing for better computation efficiency
- Enable machine learning in your application
Novice developers and programmers who wish to implement machine learning in their iOS applications and those who want to learn the fundamentals about machine learning.
Mohit Thakkar is an Associate Software Engineer with MNC. He has a bachelor's degree in computer engineering and is the author of several independently published titles, including Artificial Intelligence, Data Mining & Business Intelligence, iOS Programming, and Mobile Computing & Wireless Communication. He also published a research paper titled 'Remote Health Monitoring using Implantable Probes to Prevent Untimely Death of Animals' in the International Journal of Advanced Research in Management, Architecture, Technology and Engineering.
Implement machine learning models in your iOS applications. This short work begins by reviewing the primary principals of machine learning and then moves on to discussing more advanced topics, such as CoreML, the framework used to enable machine learning tasks in Apple products. Many applications on iPhone use machine learning: Siri to serve voice-based requests, the Photos app for facial recognition, and Facebook to suggest which people that might be in a photo. You'll review how these types of machine learning tasks are implemented and performed so that you can use them in your own apps. Beginning Machine Learning in iOS is your guide to putting machine learning to work in your iOS applications.What You'll LearnUnderstand the CoreML componentsTrain custom modelsImplement GPU processing for better computation efficiencyEnable machine learning in your application Who This Book Is ForNovice developers and programmers who wish to implement machine learning in their iOS applications and those who want to learn the fundamentals about machine learning.
Mohit Thakkar is an Associate Software Engineer with MNC. He has a bachelor's degree in computer engineering and is the author of several independently published titles, including Artificial Intelligence, Data Mining & Business Intelligence, iOS Programming, and Mobile Computing & Wireless Communication. He also published a research paper titled “Remote Health Monitoring using Implantable Probes to Prevent Untimely Death of Animals” in the International Journal of Advanced Research in Management, Architecture, Technology and Engineering.
Beginning Machine Learning in iOSChapter 1. Introduction to Machine Learning Chapter 2. Introduction to Core ML Framework Chapter 3. Custom ML Models Using Turi Create Chapter 4. Custom Core ML Models using Create ML Chapter 5. Improving Computational Efficiency
Erscheint lt. Verlag | 20.2.2019 |
---|---|
Zusatzinfo | XI, 157 p. 112 illus. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Informatik ► Betriebssysteme / Server ► iOS |
Informatik ► Programmiersprachen / -werkzeuge ► Mac / Cocoa Programmierung | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Apple • Artificial Intelligence • Computer Science • CoreML • image classification • iOS development • machine learning • Mobile Development |
ISBN-10 | 1-4842-4297-1 / 1484242971 |
ISBN-13 | 978-1-4842-4297-1 / 9781484242971 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich