Cryptology and Error Correction - Lindsay N. Childs

Cryptology and Error Correction

An Algebraic Introduction and Real-World Applications
Buch | Hardcover
XIV, 351 Seiten
2019 | 1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-15451-6 (ISBN)
58,84 inkl. MwSt
This text presents a careful introduction to methods of cryptology and error correction in wide use throughout the world and the concepts of abstract algebra and number theory that are essential for  understanding these methods.  The objective is to provide a thorough understanding of RSA, Diffie-Hellman, and Blum-Goldwasser cryptosystems and Hamming and Reed-Solomon error correction: how they are constructed, how they are made to work efficiently, and also how they can be attacked.   To reach that level of understanding requires and motivates many ideas found in a first course in abstract algebra-rings, fields, finite abelian groups, basic theory of numbers, computational number theory, homomorphisms, ideals, and cosets.  Those who complete this book will have gained a solid mathematical foundation for more specialized applied courses on cryptology or error correction, and should also be well prepared, both in concepts and in motivation, to pursue more advanced study in algebra and number theory.

This text is suitable for classroom or online use or for independent study. Aimed at students in mathematics, computer science, and engineering, the prerequisite includes one or two years of a standard calculus sequence. Ideally the reader will also take a concurrent course in linear algebra or elementary matrix theory. A solutions manual for the 400 exercises in the book is available to instructors who adopt the text for their course.


Lindsay N. Childs is Professor Emeritus at the University of Albany where he earned recognition as a much-loved mentor of students, and as an expert in Galois field theory. Capping his tenure at Albany, he was named a Collins Fellow for his extraordinary devotion to the University at Albany and the people in it over a sustained period of time. Post University of Albany, Professor Childs has taught a sequence of online courses whose content evolved into this book. Lindsay Childs is author of A Concrete Introduction to Higher Algebra, published in Springer's Undergraduate Texts in Mathematics series, as well as a monograph, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory (American Mathematical Society), and more than 60 research publications in abstract algebra.

Preface.- 1. Secure, Reliable Information.- 2. Modular Arithmetic.- 3. Linear Equations Modulo m.- 4. Unique Factorization in Z.- 5. Rings and Fields.- 6. Polynomials.- 7. Matrices and Hamming Codes.- 8. Orders and Euler's theorem.- 9. RSA Cryptography and Prime Numbers.- 10. Groups, Cosets, and Lagrange's theorem.- 11. Solving Systems of Congruences.- 12. Homomorphisms and Euler's Phi function.- 13. Cyclic Groups and Cryptography.- 14. Applications of Cosets.- 15. An Introduction to Reed-Solomon codes.- 16. Blum-Goldwasser Cryptography.- 17. Factoring by the Quadratic Sieve.- 18. Polynomials and Finite Fields.- 19. Reed-Solomon Codes II.-  Bibliography. 

"This is a really nice way of introducing students to abstract algebra. It is evident that the author has spent much time polishing the presentation including large amount of details (and numerous examples) which make the book ideal for self-study. Even though the book starts out very elementary (basically requiring no prior knowledge beyond integer arithmetic), it gets to some sophisticated results towards the end. So in summary, I can warmly recommend this book as a first introduction to algebra." (G. Teschl, Monatshefte für Mathematik, Vol. 196 (3), November, 2021)

“This is a really nice way of introducing students to abstract algebra. It is evident that the author has spent much time polishing the presentation including large amount of details (and numerous examples) which make the book ideal for self-study. Even though the book starts out very elementary (basically requiring no prior knowledge beyond integer arithmetic), it gets to some sophisticated results towards the end. So in summary, I can warmly recommend this book as a first introduction to algebra.” (G. Teschl, Monatshefte für Mathematik, Vol. 196 (3), November, 2021)

Erscheinungsdatum
Reihe/Serie Springer Undergraduate Texts in Mathematics and Technology
Zusatzinfo XIV, 351 p. 7 illus., 1 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 178 x 254 mm
Gewicht 878 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte Caeser ciphers • chinese remainder theorem • El Gamal cryptography • Lagrange's Theorem • Luhn's formula • Vernam cipher
ISBN-10 3-030-15451-3 / 3030154513
ISBN-13 978-3-030-15451-6 / 9783030154516
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich