A Holistic Approach to Ship Design (eBook)

Volume 1: Optimisation of Ship Design and Operation for Life Cycle
eBook Download: PDF
2018 | 1. Auflage
XX, 501 Seiten
Springer-Verlag
978-3-030-02810-7 (ISBN)

Lese- und Medienproben

A Holistic Approach to Ship Design -
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces a holistic approach to ship design and its optimisation for life-cycle operation. It deals with the scientific background of the adopted approach and the associated synthesis model, which follows modern computer aided engineering (CAE) procedures. It integrates techno-economic databases, calculation and multi-objective optimisation modules and s/w tools with a well-established Computer-Aided Design (CAD) platform, along with a Virtual Vessel Framework (VVF), which will allow virtual testing before the building phase of a new vessel. The resulting graphic user interface (GUI) and information exchange systems enable the exploration of the huge design space to a much larger extent and in less time than is currently possible, thus leading to new insights and promising new design alternatives. The book not only covers the various stages of the design of the main ship system, but also addresses relevant major onboard systems/components in terms of life-cycle performance to offer readers a better understanding of suitable outfitting details, which is a key aspect when it comes the outfitting-intensive products of international shipyards. The book disseminates results of the EU funded Horizon 2020 project HOLISHIP.

Preface 5
Contents 9
Editor and Contributors 11
Abbreviations 15
1 Introduction to the HOLISHIP Project 21
1.1 Historical Review 21
1.2 The HOLISHIP Project 24
References 27
2 Holistic Ship Design Optimisation 29
2.1 Introduction to Holistic Ship Design Optimisation 30
2.2 The Evolution of the Holistic Approach to Ship Design 33
2.3 The Generic Ship Design Optimisation Problem 35
2.4 Optimisation of Tanker Design 37
2.4.1 Multi-objective AFRAMAX Tanker Design 38
2.4.2 The Design Approach 41
2.4.3 Tank Arrangement 43
2.4.4 Structural Model 44
2.4.5 Analyses and Simulations 46
2.5 Discussion of Results 49
2.5.1 Exploration 49
2.5.2 Refinements 51
2.5.3 Sensitivities 52
2.5.4 The RFR-OOI Sensitivity Study 54
2.6 Conclusions 55
References 56
3 On the History of Ship Design for the Life Cycle 63
3.1 Introduction 64
3.2 Ship Design Decision Models 65
3.2.1 Ship Design as Optimization 65
3.2.2 The Stagewise Structure of the Ship Design Process 65
3.2.3 The Generic Ship Design Model 67
3.3 Specific Cases of Ship Design Optimization Studies 68
3.3.1 Generations of Ship Design Models 68
3.3.2 Synthesis Models 70
3.3.3 Multiobjective Models 72
3.3.4 Holistic Design Models 78
3.3.5 Risk-Based Design Models 85
3.4 Conclusions 89
References 91
4 Market Conditions, Mission Requirements and Operational Profiles 94
4.1 Introduction 95
4.1.1 RoPAX 96
4.1.2 Double-Ended Ferry 97
4.1.3 Offshore Support Vessel 98
4.2 Market Analysis of the RoPAX Vessel Segment 99
4.2.1 Introduction 99
4.2.2 The RoPAX Vessel Segment 100
4.2.3 The Double-Ended Ferries Market Segment 103
4.2.4 Conclusions for the Future Development in the RoPAX Vessel Segment (Including DE Ferries) 104
4.3 Mission Requirement 106
4.3.1 Transport Task 106
4.3.2 Defining the Vessel 107
4.4 Initial Sizing 107
4.4.1 Definition of Concept Design 108
4.4.2 Regression Analysis 108
4.4.3 Other Stakeholders and Their Impact 110
4.5 Operational Profiles 111
4.5.1 Other Stakeholders and Their Impact 111
4.5.2 Operational Profiling Tool—Input 112
4.5.3 Operational Profiling Tool—Simulation 113
4.5.4 Operational Profiling Tool—Results: RoPAX Application Case 115
4.5.5 Operational Profiling Tool—Results: DE Ferry Application Case 117
4.5.6 Operational Profiling Tool—Results: OSV Application Case 122
4.5.7 Operational Profiling Tool—Discussion 130
4.6 Designing a Ship Concept for a Given Task by the Use of the Intelligent GA 130
4.6.1 Design Tool Requirements 131
4.6.2 3D General Arrangement in Concept Phase of Design 132
4.6.3 Intelligent GA Tool 133
4.6.4 Internal Modules 135
4.6.5 Linked Modules 137
4.6.6 Optimisation Platform Integration 138
References 139
5 Systemic Approach to Ship Design 141
5.1 Ship Design Driven by Operational Scenarios 142
5.1.1 Operational Scenarios as a Complement to Technical Requirements 142
5.1.2 Technical Requirements 142
5.1.3 Inferring Operational Scenarios from Requirements 144
5.2 Modelling the System Architecture of the Ship 145
5.2.1 A Multi-level Architecture Model 145
5.2.2 Architecture Analysis—Circuits and Networks, Functional Chains 147
5.2.3 System Architecture as the Basis for Performance and RAM Analysis 148
5.3 Managing the Design Process with “Communities of Interest” 149
5.3.1 Ship Design: A Collaborative Design Process 149
5.3.2 Collaborative Software Architectures 151
5.3.3 Architecture of the SAR Tool 152
5.3.4 A Human-Centred Design Process 153
References 155
6 Hydrodynamic Tools in Ship Design 157
6.1 Hydrodynamic Challenges in Ship Design 158
6.1.1 Ship Resistance 159
6.1.2 Propulsion 166
6.1.3 Seakeeping 168
6.1.4 Manoeuvring 169
6.2 Different Types of Hydrodynamic Tools 171
6.2.1 Fundamental Considerations 172
6.2.2 Empirical Tools 174
6.2.3 Potential Flow Codes 175
6.2.4 Viscous Flow Codes 185
6.3 Simulation-Based Design Optimisation and Adaptive Multi-fidelity Metamodelling 196
6.3.1 Local Hybridisation of Deterministic Derivative-Free Global Algorithms 197
6.3.2 Adaptive Multi-fidelity Metamodelling 202
6.4 The HOLISHIP Integration Concept (for CFD Codes): Hydrodynamic Optimisation of a RoPAX Ferry 209
6.4.1 Hydrodynamics 210
6.4.2 Hullform 211
6.4.3 Organising Computations 212
6.4.4 Results 213
6.4.5 Discussion 218
6.5 Conclusions 219
References 221
7 Parametric Optimisation in Concept and Pre-contract Ship Design Stage 226
7.1 Introduction 227
7.2 Parametric Concept Design Optimisation 228
7.2.1 Optimisation Approach 229
7.2.2 Formulation of Early Concept Design Problem 230
7.2.3 Adaptation of Tools 232
7.2.4 Application Example 245
7.3 Parametric Ship Design and Optimisation in the Pre-contract Stage 246
7.3.1 Parametric Modelling of Hull Form and Watertight Subdivision 248
7.3.2 Assessment Tools 250
7.3.3 Surrogate Models 251
7.3.4 Formulation of a Sample Optimisation Problem 253
7.3.5 Results and Discussion 256
References 260
8 CAESES—The HOLISHIP Platform for Process Integration and Design Optimization 263
8.1 Introduction and Motivation 264
8.2 Process Integration and Design Optimization 266
8.2.1 Overview 266
8.2.2 Background 266
8.2.3 Overview of Intrinsic CAESES Functionality 267
8.2.4 Integration Approach Taken in HOLISHIP on the Basis of CAESES 268
8.2.5 Encapsulating Tools 270
8.3 Variable Geometry 273
8.3.1 Geometric Modeling 273
8.3.2 A RoPAX Ferry as an Example of Fully Parametric Modeling 275
8.3.3 An OSV as an Example of Partially Parametric Modeling 279
8.4 Data Management 281
8.4.1 Hierarchical Models 281
8.4.2 Parameters Versus Free Variables 284
8.4.3 Bottom-Up Approach for Integration 284
8.4.4 Conversion and Enrichment of Data 285
8.5 Software Connection 287
8.5.1 Software Connector 287
8.5.2 Integration of a Single Tool 289
8.5.3 Integration of Several Tools 289
8.5.4 Connection with Other Frameworks 290
8.6 Optimization 292
8.6.1 Overview 292
8.6.2 Exploration 293
8.6.3 Exploitation 294
8.6.4 Assessments 296
8.7 Direct Simulation Versus Surrogate Models 298
8.7.1 Idea of Surrogate Modeling 298
8.7.2 Typical Surrogate Models 299
8.7.3 Using Surrogate Models 300
8.8 Scenarios of Application 302
8.8.1 Manual Versus Automated Design 302
8.8.2 Offers via WebApps 303
8.9 Outlook 305
8.9.1 Meta-Projects 305
8.9.2 Community of Providers, Consultants and Users 305
8.10 Conclusions 306
References 307
9 Structural Design Optimization—Tools and Methodologies 310
9.1 Introduction 311
9.2 Trends in Optimization Methodologies 313
9.3 Optimization Tools 316
9.4 Quality Assessment of the Pareto Solutions 317
9.5 LBR-5: A Least Cost Structural Optimization Method 321
9.6 BESST Project 322
9.6.1 Motivation 322
9.6.2 Model for Study 324
9.6.3 Optimization Workflow Description 324
9.6.4 Results and Discussion 326
9.7 HOLISHIP Project 327
9.7.1 Presentation 327
9.7.2 Methodology 329
9.7.3 Concept Design Phase 330
9.7.4 Contract Design Phase 330
9.8 Efficient Tools for Ship and Offshore Structure Optimization in Collision Scenarios 332
9.8.1 Summary 332
9.8.2 Response Surface Method (RSM) 333
9.8.3 Analytical Method 335
9.8.4 Future Scope for Optimization Tools 337
9.9 Conclusions 337
References 338
10 Design for Modularity 343
10.1 Introduction to Design for Modularity 344
10.2 Defining and Delimiting Modularity 344
10.2.1 A Modular or an Integral Product Architecture? 345
10.2.2 Related Concepts 347
10.2.3 Modularity Types 347
10.3 Modularity in the Design Phase 350
10.3.1 Supporting a Product Platform Strategy 350
10.3.2 Design Process Efficiency by Configuration-Based Design Based on Modularity 351
10.3.3 Modularity Supporting Design Exploration and Innovation 354
10.3.4 Modularity in Ship Design—Summarized 358
10.4 Modularization in Ship Production 358
10.4.1 Effects on the Ship Production Value Chain 359
10.4.2 Early Outfitting 359
10.5 Modularity in Operation 361
10.5.1 Modularity for Flexibility in Operation 362
10.5.2 Modularity for Easy Retrofit and Modernization 364
10.5.3 Design Methods for Modular Adaptation in Operation 365
10.6 Conclusions 368
References 368
11 Application of Reliability, Availability and Maintenance Principles and Tools for Ship Design 371
11.1 Description of RAM Objectives and Methodology 372
11.1.1 RAM Objectives 372
11.1.2 RAM Methodology 373
11.2 RAM Applications 373
11.2.1 Aircraft Industry 373
11.2.2 Railway Industry 373
11.2.3 Oil and Gas/Offshore Industry 374
11.2.4 Defence Industry 374
11.2.5 Energy Industry 374
11.2.6 Process Industry 375
11.3 Motivation for RAM Analysis in Ship Design 375
11.3.1 Current Situation and Trends 375
11.3.2 Expected Benefit of RAM at Early Ship Design Stage 376
11.3.3 Main Target Ship Types for RAM Analyses 377
11.4 Specificities of Ship Design from RAM Analysis Point of View 377
11.5 Main Ship Systems for RAM Analysis 379
11.6 RAM Study 380
11.6.1 RAM Study Process 380
11.6.2 Criticality Analysis 380
11.6.3 Reliability Data Collection 381
11.6.4 RAM Assumptions 381
11.6.5 RAM Modelling, Simulation and Calculation 381
11.6.6 Results Generation 382
11.7 RAM Modelling 383
11.7.1 Boolean Formalisms 383
11.7.2 States/Transitions Formalisms 384
11.7.3 Model-Based Models 386
11.7.4 Most Suitable Modelling for Ship Design 388
11.8 Main Required Functionalities of RAM Tools 388
11.8.1 Step-by-Step Analysis for Verification 389
11.8.2 Type of Calculation 389
11.8.3 Results 390
11.8.4 Sensitivities 391
11.8.5 Life-Cycle Cost (LCC) Calculations 391
11.9 Reliability Data for RAM Analysis 391
11.10 Conclusions 393
References 393
12 Life Cycle Performance Assessment (LCPA) Tools 396
12.1 Introduction 397
12.2 Methodologies for the Assessment 398
12.2.1 Life Cycle Costing (LCC) 398
12.2.2 Life Cycle Assessment (LCA) 400
12.2.3 LCC and LCA in the Shipping Sector 400
12.2.4 Cost Estimation Methods and Adoption of KPIs 401
12.3 End-of-Life Phase 403
12.3.1 Alternatives for End-of-Life Phase 403
12.3.2 KPI Inputs for End-of-Life Assessment 405
12.3.3 Data Required for End-of-Life Assessment 405
12.3.4 Energy-Economic Evaluation of End-of-Life Procedures 407
12.3.5 International Regulation 408
12.4 A Selection of KPIs for an Holistic Approach 409
12.5 A Methodology for an Holistic Approach 413
12.6 LCPA and KPIs Calculation 417
12.7 Consideration of Uncertainties 420
12.8 Conclusions and Comments on Application Cases 422
References 422
13 Modelling and Optimization of Machinery and Power System 426
13.1 Introduction 426
13.2 Definition/Composition of Machinery and Power System 427
13.3 Holistic Approach to Power System Modelling 430
13.4 Optimization and Verification of Power System Concept Design 433
13.5 Application Example 442
13.6 Conclusions 442
References 443
14 Advanced Ship Machinery Modeling and Simulation 445
14.1 Marine Energy Systems: Need for an Integrated Approach 446
14.2 Process Modeling and Simulation 447
14.2.1 Types of Problems and Application Areas 447
14.2.2 Generic Problem Description/Workflow 449
14.3 Mathematical Formulation of the Process Modeling Framework 451
14.3.1 Conservation Equations and Physical Phenomena 451
14.3.2 Connectivity Equations 454
14.3.3 Thermophysical Properties 454
14.4 Individual Component Models and Processes Library 455
14.4.1 Model Libraries 455
14.4.2 Primary Energy Converters 455
14.4.3 Secondary Energy Converters 456
14.4.4 Flow Transport Equipment 457
14.4.5 Heat Exchange and Phase Separation 458
14.4.6 Electrical System Components 458
14.4.7 Control and Automation 458
14.4.8 Power Flow 459
14.4.9 Mass Separation and (Bio) Chemical Reactors 459
14.5 Integration with Other Software Platforms 459
14.5.1 Objective 459
14.5.2 Building a Model with Exchange and Co-simulation Capabilities 460
14.6 Illustrative Applications 461
14.6.1 Hybrid-Electric Propulsion Systems 461
14.6.2 Desulfurization Scrubbers 464
14.6.3 LNG Carrier Newbuilding Configuration Alternatives 467
14.6.4 COSSMOS Use Under an Integration Platform for the HOLISHIP Project 470
14.7 Conclusions 473
References 474
15 HOLISPEC/RCE: Virtual Vessel Simulations 477
15.1 Introduction 478
15.2 Why Do We Need Coupled Simulations? 479
15.3 Simulations in Concept Design 482
15.3.1 Introduction 482
15.3.2 Data Representation and Exchange 482
15.4 Simulation in Design Verification 483
15.5 Available Tools and Frameworks 484
15.5.1 RCE and CPACS 484
15.5.2 Holispec 485
15.6 Applications and Case Studies 489
15.6.1 Concept Testing 489
15.6.2 Virtual Sea Trials 491
15.6.3 Coupled Simulations 491
15.6.4 Simulations in Concept Design: A Case Study 492
15.7 Conclusions and Way Ahead 496
References 496
Terminology of Some Used Important Notions 498

Erscheint lt. Verlag 11.12.2018
Zusatzinfo XX, 490 p. 314 illus., 263 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Weitere Themen CAD-Programme
Mathematik / Informatik Mathematik
Technik Bauwesen
Technik Maschinenbau
Schlagworte CAD Ship Design • HOLISHIP Project • Holistic Ship Design Optimization • Life Cycle Economics • Multi-objective Optimisation • Virtual Demonstrators • Virtual Vessel Framework
ISBN-10 3-030-02810-0 / 3030028100
ISBN-13 978-3-030-02810-7 / 9783030028107
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 24,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Guide für effizientes Projektmanagement

von Friedrich V. Klopstock

eBook Download (2024)
tredition (Verlag)
19,99
Master the fundamentals of CNC machining, G-Code, 2D Laser machining …

von Samer Najia

eBook Download (2024)
Packt Publishing Limited (Verlag)
21,59