Models of Computation for Big Data (eBook)
VIII, 104 Seiten
Springer International Publishing (Verlag)
978-3-319-91851-8 (ISBN)
The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory.
Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.
Preface.- Streaming Models.- Introduction.- Indyk’s Algorithm.- Point Query.- Sketching.- Sub-Linear Time Models.- Introduction.- Dimentionality Reduction.- Johnson Lindenstrauss Lower Bound.- Fast Johnson Lindenstrauss Transform.- Sublinear Time Algorithmic Models.- Linear Algebraic Models.- Introduction.- Subspace Embeddings.- Low-Rank Approximation.- The Matrix Completion Problem.- Other Computational Models.- References
Erscheint lt. Verlag | 4.12.2018 |
---|---|
Reihe/Serie | Advanced Information and Knowledge Processing |
Advanced Information and Knowledge Processing | |
SpringerBriefs in Advanced Information and Knowledge Processing | SpringerBriefs in Advanced Information and Knowledge Processing |
Zusatzinfo | VIII, 104 p. 3 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Techniquesfor Big Data Sets • Big Data Algorithms • dimension reduction • Linear Algebraic Models • streaming algorithms • sublinear time algorithms |
ISBN-10 | 3-319-91851-6 / 3319918516 |
ISBN-13 | 978-3-319-91851-8 / 9783319918518 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich