Models of Computation for Big Data - Rajendra Akerkar

Models of Computation for Big Data

Buch | Softcover
VIII, 104 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-91850-1 (ISBN)
69,54 inkl. MwSt

The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory.

Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.

Preface.- Streaming Models.- Introduction.- Indyk's Algorithm.- Point Query.- Sketching.- Sub-Linear Time Models.- Introduction.- Dimentionality Reduction.- Johnson Lindenstrauss Lower Bound.- Fast Johnson Lindenstrauss Transform.- Sublinear Time Algorithmic Models.- Linear Algebraic Models.- Introduction.- Subspace Embeddings.- Low-Rank Approximation.- The Matrix Completion Problem.- Other Computational Models.- References

Erscheinungsdatum
Reihe/Serie Advanced Information and Knowledge Processing
SpringerBriefs in Advanced Information and Knowledge Processing
Zusatzinfo VIII, 104 p. 3 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 183 g
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Algorithm analysis and problem complexity • Algorithmic Techniquesfor Big Data Sets • Big Data Algorithms • dimension reduction • Linear Algebraic Models • streaming algorithms • sublinear time algorithms
ISBN-10 3-319-91850-8 / 3319918508
ISBN-13 978-3-319-91850-1 / 9783319918501
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99