Shrinkage Estimation (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XIII, 333 Seiten
Springer International Publishing (Verlag)
978-3-030-02185-6 (ISBN)

Lese- und Medienproben

Shrinkage Estimation - Dominique Fourdrinier, William E. Strawderman, Martin T. Wells
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions. 
Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book. 
Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions. 
Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports. 
Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein's identity doesn't hold; Stein's lemma and Stokes' theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions.


Dominique Fourdrinier is a Professor of Mathematical Statistics at the University of Rouen in France and an Adjunct Professor of Statistical Science at Cornell University. He earned his M.S. and Ph.D. degrees, both in Mathematical Statistics, at the University of Rouen. He is noted for his deep insights on the connections between shrinkage estimation and the properties of differential operators and has made important contributions to Bayesian statistics, decision theory, estimation theory, spherical and elliptical symmetry, the Stein phenomena as well as to statistical methods for signal and image processing.
 
William E. Strawderman is a Professor of Statistics at Rutgers University. He earned an M.S. in Mathematics from Cornell University and a second M.S. in Statistics from Rutgers, and then completed his Ph.D. in Statistics, also at Rutgers. He is a fellow of both the Institute of Mathematical Statistics and American Statistical Society and an Elected Member, International Statistical Institute. In 2015 he was named a Distinguished Alumni at Cornell. He is noted for path-breaking work in shrinkage estimation and has made fundamental contributions to a number of additional areas in statistics, including Bayesian statistics, decision theory, spherical symmetry, and biostatistics.

Martin T. Wells is the Charles A. Alexander Professor of Statistical Sciences at Cornell University. He is also a Professor of Social Statistics, Professor of Biostatistics and Epidemiology at Weill Cornell Medicine as well as an Elected Member of the Cornell Law School Faculty. He is a fellow of both the Institute of Mathematical Statistics and American Statistical Society and an Elected Member, International Statistical Institute. His research interests include Bayesian statistics, biostatistics, decision theory, empirical legal studies, machine learning, and statistical genomics.

Dominique Fourdrinier is a Professor of Mathematical Statistics at the University of Rouen in France and an Adjunct Professor of Statistical Science at Cornell University. He earned his M.S. and Ph.D. degrees, both in Mathematical Statistics, at the University of Rouen. He is noted for his deep insights on the connections between shrinkage estimation and the properties of differential operators and has made important contributions to Bayesian statistics, decision theory, estimation theory, spherical and elliptical symmetry, the Stein phenomena as well as to statistical methods for signal and image processing. William E. Strawderman is a Professor of Statistics at Rutgers University. He earned an M.S. in Mathematics from Cornell University and a second M.S. in Statistics from Rutgers, and then completed his Ph.D. in Statistics, also at Rutgers. He is a fellow of both the Institute of Mathematical Statistics and American Statistical Society and an Elected Member, International Statistical Institute. In 2015 he was named a Distinguished Alumni at Cornell. He is noted for path-breaking work in shrinkage estimation and has made fundamental contributions to a number of additional areas in statistics, including Bayesian statistics, decision theory, spherical symmetry, and biostatistics.Martin T. Wells is the Charles A. Alexander Professor of Statistical Sciences at Cornell University. He is also a Professor of Social Statistics, Professor of Biostatistics and Epidemiology at Weill Cornell Medicine as well as an Elected Member of the Cornell Law School Faculty. He is a fellow of both the Institute of Mathematical Statistics and American Statistical Society and an Elected Member, International Statistical Institute. His research interests include Bayesian statistics, biostatistics, decision theory, empirical legal studies, machine learning, and statistical genomics.

Chapter 1. Decision Theory Preliminaries.- Chapter 2. Estimation of a normal mean vector I.- Chapter 3. Estimation of a normal mean vector II.- Chapter 4. Spherically symmetric distributions.- Chapter 5. Estimation of a mean vector for spherically symmetric distributions I: known scale.- Chapter 6. Estimation of a mean vector for spherically symmetric distributions II: with a residual.- Chapter 7. Restricted Parameter Spaces.- Chapter 8. Loss and Confidence Level Estimation.-

Erscheint lt. Verlag 27.11.2018
Reihe/Serie Springer Series in Statistics
Springer Series in Statistics
Zusatzinfo XIII, 333 p. 1 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Bayes estimation • Decision Theory • Mathematical Statistics • Minimax estimation • Multivariate Statistics • shrinkage estimation • Spherical Symmetry
ISBN-10 3-030-02185-8 / 3030021858
ISBN-13 978-3-030-02185-6 / 9783030021856
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich