Data Analysis and Visualization Using Python - Dr. Ossama Embarak

Data Analysis and Visualization Using Python (eBook)

Analyze Data to Create Visualizations for BI Systems
eBook Download: PDF
2018 | 1st ed.
XX, 374 Seiten
Apress (Verlag)
978-1-4842-4109-7 (ISBN)
Systemvoraussetzungen
79,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. 

Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. 

In conclusion, you will complete a detailed case study, where you'll get a chance to revisit the concepts you've covered so far.

What You Will Learn
  • Use Python programming techniques for data science
  • Master data collections in Python 
  • Create engaging visualizations for BI systems
  • Deploy effective strategies for gathering and cleaning data
  • Integrate the Seaborn and Matplotlib plotting systems
Who This Book Is For

Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.



Dr. Ossama Embarak holds a Doctorate in Computer Science from the Heriot-Watt University in Scotland, UK. He has more than 2 decades of training and teaching experience with a number of programming languages including C++, Java, C#, R, and Python. He is presently the lead CIS Program Coordinator for Higher Colleges of Technology, UAE's largest applied higher educational institution, with over 23,000 students attending campuses throughout the region.
Recently, he got an interdisciplinary research grant of 199000 AED to implement a machine learning system for mining students' knowledge and skills.

He has participated in many scholarly activities as a reviewer for journals in the field of computer and information sciences, artificial intelligence, mobile and web technologies. He has published numerous papers in datamining and knowledge discovery, and was also involved as a co-chair for the Technical Program Committee (TPC) for various regional and international conferences.


Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you'll get a chance to revisit the concepts you've covered so far.What You Will LearnUse Python programming techniques for data scienceMaster data collections in Python Create engaging visualizations for BI systemsDeploy effective strategies for gathering and cleaning dataIntegrate the Seaborn and Matplotlib plotting systemsWho This Book Is ForDevelopers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.

Dr. Ossama Embarak holds a Doctorate in Computer Science from the Heriot-Watt University in Scotland, UK. He has more than 2 decades of training and teaching experience with a number of programming languages including C++, Java, C#, R, and Python. He is presently the lead CIS Program Coordinator for Higher Colleges of Technology, UAE’s largest applied higher educational institution, with over 23,000 students attending campuses throughout the region.Recently, he got an interdisciplinary research grant of 199000 AED to implement a machine learning system for mining students’ knowledge and skills.He has participated in many scholarly activities as a reviewer for journals in the field of computer and information sciences, artificial intelligence, mobile and web technologies. He has published numerous papers in datamining and knowledge discovery, and was also involved as a co-chair for the Technical Program Committee (TPC) for various regional and international conferences.

Chapter 1:  Introduction to data science with python    1.1 What is data science? 1.2 Why Python?1.3 Python learning resources.1.4 Python environment and editors (Jupyter Notebook, Netbeans , etc)1.5 The basics of the python programming1.6 Fundamental python programming techniques 1.6.1 The Tabular data, and data formats1.6.2 Python pandas data science library 1.6.3 Python lambdas, and the numpy library. 1.6.4 Introduce the data cleaning and manipulation techniques1.6.5 Introduce the abstraction of the Series and DataFrame1.6.6 Run basic inferential statistical analysis. 1.7 Exercises and answersChapter 2: The importance of data visualization in business intelligence2.1 Shift from input to output data preference2.2 Why Data visualization is important?2.3 How is the modern business needs Data visualization? 2.4 The future of Data Visualization2.5 How data visualization is used for Business decision making 2.6 Introduce data visualization tchniques 2.6.1 Loading libraries2.6.2 Popular Libraries for Data Visualization in PythonMatplotlibSeabornGeoplotlib PandasPlotly2.6.3 Introduce Plots in Python2.7 Exercises and answersChapter 3:  Data collections structure 3.1 Lists 3.1.1 Create lists 3.1.2 Accessing values in lists 3.1.3 Add and update lists 3.1.4 Delete list elements 3.1.5 Basic list operations 3.1.6 Indexing, slicing, and matrices 3.1.7 Built-in list functions & methods 3.1.8 List methods 3.1.9 List sorting and traversing 3.1.10 Lists and strings 3.2 Parsing lines 3.3 Aliasing  3.4 Dictionaries3.4.1 Create dictionaries3.4.2 Updating and accessing values in dictionary 3.4.3 Delete dictionary elements 3.4.4 Built-in dictionary functions & methods 3.5 Tuples3.5.1 Create tuples3.5.2 Updating tuples3.5.3 Accessing values in tuples3.5.4 Basic tuples operations3.6Series data structure 3.7DataFrame data structure 3.8Panel data structure 3.9 Exercises and answersChapter 4: File I/O processing & Regular expressions 4.1File I/O processing 4.1.1Screen in/out processing 4.1.2Opening and closing files 4.1.3The file object attributes 4.1.4Reading and writing files 4.1.5Directories in python 4.2Regular expressions 4.2.1Regular expression patterns 4.2.2Special character classes 4.2.3Repetition cases Alternatives Anchors 4.3Exercises and answers Chapter 5: Data gathering and cleaning 5.1 Data cleaning Check missing values Handle the missing values 5.2Read and clean csv file 5.3Data integration 5.4Read the json file 5.5Reading the html file 5.6Exercises and answers Chapter 6:  Data exploring and analysis 6.1Series data structure 6.1.1Create a series 6.1.2Accessing data from series with position 6.2DataFrame data structure 6.2.1Create a DataFrame 6.2.2Updating and accessing DataFrame Column selection Column addition Column deletion Row selection Row addition Row deletion 6.3Panel data structure 6.3.1Create panel 6.3.2Accessing data from panel with position 6.4Data analysis 6.4.1Statistical analysis 6.4.2Data grouping Iterating through groups Aggregations Transformations Filtration 6.5Exercises and answers Chapter 7: Data visualization 7.1Direct plotting Line plotting Bar plotting Pie chart Box plotting Histogram plotting A scatterplot 7.2Seaborn plotting system Strip plotting Boxplot Swarmplot Jointplot 7.3Matplotlib plotting Line plotting Bar chart Histogram plotting Scatter plot Stack plots Pie chart 7.4Exercises. Chapter 8: Case Study 8.1 Business case 8.2 Case data gathering8.3 Case data analysis 8.4 Case data Visualization

Erscheint lt. Verlag 20.11.2018
Zusatzinfo XX, 374 p. 267 illus.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Python
Schlagworte Analysis • BigData • Collection • Data • datascience • plotting • Python • visualizations
ISBN-10 1-4842-4109-6 / 1484241096
ISBN-13 978-1-4842-4109-7 / 9781484241097
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
34,99
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99