Hands-On Ensemble Learning with R (eBook)

A beginner's guide to combining the power of machine learning algorithms using ensemble techniques
eBook Download: EPUB
2018
376 Seiten
Packt Publishing (Verlag)
978-1-78862-917-1 (ISBN)

Lese- und Medienproben

Hands-On Ensemble Learning with R - Prabhanjan Narayanachar Tattar
Systemvoraussetzungen
34,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques - bagging, random forest, and boosting - then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.


Explore powerful R packages to create predictive models using ensemble methodsKey FeaturesImplement machine learning algorithms to build ensemble-efficient modelsExplore powerful R packages to create predictive models using ensemble methodsLearn to build ensemble models on large datasets using a practical approachBook DescriptionEnsemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques - bagging, random forest, and boosting - then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.What you will learnCarry out an essential review of re-sampling methods, bootstrap, and jackknifeExplore the key ensemble methods: bagging, random forests, and boostingUse multiple algorithms to make strong predictive modelsEnjoy a comprehensive treatment of boosting methodsSupplement methods with statistical tests, such as ROCWalk through data structures in classification, regression, survival, and time series dataUse the supplied R code to implement ensemble methodsLearn stacking method to combine heterogeneous machine learning modelsWho this book is forThis book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.
Erscheint lt. Verlag 27.7.2018
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-78862-917-5 / 1788629175
ISBN-13 978-1-78862-917-1 / 9781788629171
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43