New Trends in Intuitive Geometry (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
X, 458 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-57413-3 (ISBN)

Lese- und Medienproben

New Trends in Intuitive Geometry -
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.




Gergely Ambrus is a researcher at the Alfréd Rényi Institute of Mathematics, working in discrete, convex and stochastic geometry and discrete analysis. He has organized several conferences in the field.

 

Imre Bárány is a research professor at the Alfréd Rényi Institute of Mathematics in Budapest and the Astor Professor of Mathematics at University College London. His main field of interest is discrete and convex geometry, and random points and lattice points in convex bodies, with applications in computer science, operations research, and elsewhere. He was an invited speaker at ICM 2002, Beijing. He has organized several conferences in discrete and convex geometry including three in Oberwolfach on Discrete Geometry.

 

Károly J. Böröczky is a research professor at the Alfréd Rényi Institute of Mathematics and also a professor at the Central European University and the Loránd Eötvös University. He has organized numerous conferences on discrete and combinatorial geometry including one at AIM, and is the author of the monograph Finite Packing and Covering, published in 2004.

 

Gábor Fejes Tóth is a research professor emeritus at the Alfréd Rényi Institute of Mathematics. His area of research is discrete geometry and convexity. Before his retirement he headed the Department of Geometry of the Rényi Institute. He has organized several conferences in discrete and convex geometry including one in Oberwolfach on Discrete Geometry.

 

János Pach is a research professor at the Alfréd Rényi Institute of Mathematics and also a professor at the École Polytechnique Fédérale de Lausanne, Switzerland. His main fields of interest are combinatorics, discrete and computational geometry. He was invited speaker at ICM 2014, Seoul. He is coauthor of the monographs Combinatorial Geometry (1995) and Research Problems in Discrete Geometry (2005).

Gergely Ambrus is a researcher at the Alfréd Rényi Institute of Mathematics, working in discrete, convex and stochastic geometry and discrete analysis. He has organized several conferences in the field.   Imre Bárány is a research professor at the Alfréd Rényi Institute of Mathematics in Budapest and the Astor Professor of Mathematics at University College London. His main field of interest is discrete and convex geometry, and random points and lattice points in convex bodies, with applications in computer science, operations research, and elsewhere. He was an invited speaker at ICM 2002, Beijing. He has organized several conferences in discrete and convex geometry including three in Oberwolfach on Discrete Geometry.   Károly J. Böröczky is a research professor at the Alfréd Rényi Institute of Mathematics and also a professor at the Central European University and the Loránd Eötvös University. He has organized numerous conferences on discrete and combinatorial geometry including one at AIM, and is the author of the monograph Finite Packing and Covering, published in 2004.   Gábor Fejes Tóth is a research professor emeritus at the Alfréd Rényi Institute of Mathematics. His area of research is discrete geometry and convexity. Before his retirement he headed the Department of Geometry of the Rényi Institute. He has organized several conferences in discrete and convex geometry including one in Oberwolfach on Discrete Geometry.   János Pach is a research professor at the Alfréd Rényi Institute of Mathematics and also a professor at the École Polytechnique Fédérale de Lausanne, Switzerland. His main fields of interest are combinatorics, discrete and computational geometry. He was invited speaker at ICM 2014, Seoul. He is coauthor of the monographs Combinatorial Geometry (1995) and Research Problems in Discrete Geometry (2005).

Introduction.- A. Barvinok: The tensorization trick in geometry.- K. Bezdek and M. A. Khan: Contact numbers for sphere packings.- P. M. Blagojević, A. S. D. Blagojević, and G. M. Ziegler: The topological Tverberg theorem plus constraints.- B. Csikós: On the volume of Boolean expressions of balls – A review of the Kneser-Poulsen conjecture.- F. de Zeeuw: A survey of Elekes-Rónyai-type problems.- G. Domokos and G. W. Gibbons: The geometry of abrasion.- F. M. de Oliveira Filho and F. Vallentin: Computing upper bounds for the packing density of congruent copies of a convex body.- P. Hajnal and E. Szemerédi: Two geometrical applications of the semi-random method.- A. F. Holmsen: Erdős-Szekeres theorems for families of convex sets.- R. Kusner, W. Kusner, J. C. Lagarias, and S. Shlosman: Configuration spaces of equal spheres touching a given sphere: the twelve spheres problem.- E. León and G. M. Ziegler: Spaces of convex n-partitions.- P. McMullen: New regular compounds of 4-polytopes.- O. R. Musin, Five Essays on the Geometry of László Fejes Tóth.- M. Naszódi: Flavors of translative coverings.- M. Sharir and Noam Solomon: Incidences between points and lines in three dimensions.- J. Solymosi and F. de Zeeuw: Incidence bounds for complex algebraic curves on Cartesian products.- K. J. Swanepoel: Combinatorial distance geometry in normed spaces. 

Erscheint lt. Verlag 3.11.2018
Reihe/Serie Bolyai Society Mathematical Studies
Bolyai Society Mathematical Studies
Zusatzinfo X, 458 p. 180 illus., 16 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte algebraic methods in discrete geometry • Combinatorial Geometry • combinatorics • Discrete Geometry • Incidence geometry • packing and covering problems
ISBN-10 3-662-57413-6 / 3662574136
ISBN-13 978-3-662-57413-3 / 9783662574133
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich