Automated Machine Learning
Methods, Systems, Challenges
Seiten
2019
|
1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-05317-8 (ISBN)
Springer International Publishing (Verlag)
978-3-030-05317-8 (ISBN)
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
1 Hyperparameter Optimization.- 2 Meta-Learning.- 3 Neural Architecture Search.- 4 Auto-WEKA.- 5 Hyperopt-Sklearn.- 6 Auto-sklearn.- 7 Towards Automatically-Tuned Deep Neural Networks.- 8 TPOT.- 9 The Automatic Statistician.- 10 AutoML Challenges.
"This interesting collection should be useful for AutoML researchers seeking an overview and comprehensive bibliography." (Anoop Malaviya, Computing Reviews, June 14, 2021)
Erscheinungsdatum | 30.05.2019 |
---|---|
Reihe/Serie | The Springer Series on Challenges in Machine Learning |
Zusatzinfo | XIV, 219 p. 54 illus., 45 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 609 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Architecture search • Automated data science • Automated machine learning • Deep learning • Feature Selection • machine learning • Machine learning pipeline optimization • Machine learning software • Off-the-shelf machine learning • open access • Preprocessing • Selecting a machine learning algorithm • Tuning Hyperparameters |
ISBN-10 | 3-030-05317-2 / 3030053172 |
ISBN-13 | 978-3-030-05317-8 / 9783030053178 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
24,95 €
Modelle für 3D-Druck und CNC entwerfen
Buch | Softcover (2022)
dpunkt (Verlag)
34,90 €