Geometry and Algebra of Multidimensional Three-Webs
Springer (Verlag)
978-0-7923-1684-8 (ISBN)
*Et moi, ..., Ii j'avait so comment en revenir. je One serviee mathematics has rendered the n 'y serais point all~.' human nee. It hal put rommon sense back Jules Verne whme it belongs, on the topmost shelf next to the dusty canister labelled' discarded nonsense'. The series il divergent; therefore we may be EricT. Bell able to do scmething with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari- ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci- ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser- vice topology has rendered mathematical physics ...'; 'One service logic has rendered computer science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
1 Three-Webs and Geometric Structures Associated with Them.- 1.1 G-Structures, Fibrations and Foliations.- 1.2 Three-Webs on Smooth Manifolds.- 1.3 Geometry of the Tangent Space of a Multidimensional Three-Web.- 1.4 Structure Equations of a Multidimensional Three-Web.- 1.5 Parallelizable and Group Three-Webs.- 1.6 Computation of the Torsion and Curvature Tensors of a Three-Web.- 1.7 The Canonical Chern Connection on a Three-Web.- 1.8 Other Connections Associated with a Three-Web.- 1.9 Subwebs of Multidimensional Three-Webs.- Problems.- Notes.- 2 Algebraic Structures Associated with Three-Webs.- 2.1 Quasigroups and Loops.- 2.2 Configurations in Abstract Three-Webs.- 2.3 Identities in Coordinate Loops and Closure Conditions.- 2.4 Local Differentiable Loops and Their Tangent Algebras.- 2.5 Tangent Algebras of a Multidimensional Three-Web.- 2.6 Canonical Coordinates in a Local Analytic Loop.- 2.7 Algebraic Properties of the Chern Connection.- Problems.- Notes.- 3 Transversally Geodesic and Isoclinic Three-Webs.- 3.1 Transversally Geodesic and Hexagonal Three-Webs.- 3.2 Isoclinic Three-Webs.- 3.3 Grassmann Three-Webs.- 3.4 An Almost Grassmann Structure Associated with a Three-Web. Problems of Grassmannization and Algebraization.- 3.5 Isoclinicly Geodesic Three-Webs. Three-Webs over Algebra.- Problems.- Notes.- 4 The Bol Three-Webs and the Moufang Three-Webs.- 4.1 The Bol Three-Webs.- 4.2 The Isoclinic Bol Three-Webs.- 4.3 The Six-Dimensional Bol Three-Webs.- 4.4 The Moufang Three-Webs.- 4.5 The Moufang Three-Web of Minimal Dimension.- Problems.- Notes.- 5 Closed G-Structures Associated with Three-Webs.- 5.1 Closed G-Structures on a Smooth Manifold.- 5.2 Closed G-Structures Defined by Multidimensional Three-Webs.- 5.3 Four-dimensional Hexagonal Three-Webs.- 5.4 The Closure ofThe G-Structure Defined by a Multidimensional Hexagonal Three-Web.- 5.5 Three-Webs and Identities in Loops.- Problems.- Notes.- 6 Automorphisms of Three-Webs.- 6.1 The Autotopies of Quasigroups and Three-Webs.- 6.2 Infinitesimal Automorphisms of Three-Webs.- 6.3 Regular Infinitesimal Automorphisms of Three-Webs.- 6.4 G-Webs.- Problems.- Notes.- 7 Geometry of the Fourth Order Differential Neighborhood of a Multidimensional Three-Web.- 7.1 Computation of Covariant Derivatives of the Curvature Tensor of a Three-Web.- 7.2 Internal Mappings in Coordinate Loops of a Three-Web.- 7.3 An Algebraic Characterization of the Tangent W4-Algebra of a Three-Web.- 7.4 Classification of Three-Webs in the Fourth Order Differential Neighborhood.- 7.5 Three-Webs with Elastic Coordinate Loop.- Problems.- Notes.- 8 d-Webs of Codimension r.- 8.1 (n + 1)-Webs on a Manifold of Dimension nr.- 8.2 (n + 1)-Webs on a Grassmann Manifold.- 8.3 (n + 1)-Webs and Almost Grassmann Structures.- 8.4 Transversally Geodesic and Isoclinic (n + 1)-Webs.- 8.5 d-Webs on a Manifold of Dimension nr.- 8.6 The Algebraization Problem for Multidimensional d-Webs.- 8.7 The Rank Problem for d-Webs.- Problems.- Notes.- Appendix A.- Symbols Frequently Used.
Erscheint lt. Verlag | 31.3.1992 |
---|---|
Reihe/Serie | Mathematics and its Applications ; 82 | Mathematics and its Applications ; 82 |
Zusatzinfo | XVII, 358 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-7923-1684-3 / 0792316843 |
ISBN-13 | 978-0-7923-1684-8 / 9780792316848 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich