Geometric Methods in Degree Theory for Equivariant Maps - Alexander M. Kushkuley, Zalman I. Balanov

Geometric Methods in Degree Theory for Equivariant Maps

Buch | Softcover
VI, 142 Seiten
1996
Springer Berlin (Verlag)
978-3-540-61529-3 (ISBN)
28,84 inkl. MwSt
The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations.
The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.

Fundamental domains and extension of equivariant maps.- Degree theory for equivariant maps of finite-dimensional manifolds: Topological actions.- Degree theory for equivariant maps of finite-dimensional manifolds: Smooth actions.- A winding number of equivariant vector fields in infinite dimensional banach spaces.- Some applications.

Erscheint lt. Verlag 19.8.1996
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VI, 142 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 239 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebraische Topologie • Differentialgeometrie • Differenzialgeometrie • Equivariant topology • Homotopie • Homotopy • manifold • Nichteuklidische Geometrie • Nonlinear analysis • Winding number
ISBN-10 3-540-61529-6 / 3540615296
ISBN-13 978-3-540-61529-3 / 9783540615293
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99