Geometric Methods in Degree Theory for Equivariant Maps
Seiten
1996
|
1996
Springer Berlin (Verlag)
978-3-540-61529-3 (ISBN)
Springer Berlin (Verlag)
978-3-540-61529-3 (ISBN)
The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations.
The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
Fundamental domains and extension of equivariant maps.- Degree theory for equivariant maps of finite-dimensional manifolds: Topological actions.- Degree theory for equivariant maps of finite-dimensional manifolds: Smooth actions.- A winding number of equivariant vector fields in infinite dimensional banach spaces.- Some applications.
Erscheint lt. Verlag | 19.8.1996 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VI, 142 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 239 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebraische Topologie • Differentialgeometrie • Differenzialgeometrie • Equivariant topology • Homotopie • Homotopy • manifold • Nichteuklidische Geometrie • Nonlinear analysis • Winding number |
ISBN-10 | 3-540-61529-6 / 3540615296 |
ISBN-13 | 978-3-540-61529-3 / 9783540615293 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €