Large Scale Hierarchical Classification: State of the Art (eBook)
XVI, 93 Seiten
Springer International Publishing (Verlag)
978-3-030-01620-3 (ISBN)
This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as:
1. High imbalance between classes at different levels of the hierarchy
2. Incorporating relationships during model learning leads to optimization issues
3. Feature selection
4. Scalability due to large number of examples, features and classes
5. Hierarchical inconsistencies
6. Error propagation due to multiple decisions involved in making predictions for top-down methods
The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks.
The purpose of this book is two-fold:
1. Help novice researchers/beginners to get up to speed by providing a comprehensive overview of several existing techniques.
2. Provide several research directions that have not yet been explored extensively to advance the research boundaries in HC.
New approaches discussed in this book include detailed information corresponding to the hierarchical inconsistencies, multi-task learning and feature selection for HC. Its results are highly competitive with the state-of-the-art approaches in the literature.
1 Introduction.- 2 Background and Literature Review.- 3 Hierarchical Structure Inconsistencies.- 4 Large Scale Hierarchical Classification with Feature Selection.- 5 Multi-Task Learning.- 6 Conclusions and Future Research Directions.
Erscheint lt. Verlag | 9.10.2018 |
---|---|
Reihe/Serie | SpringerBriefs in Computer Science | SpringerBriefs in Computer Science |
Zusatzinfo | XVI, 93 p. 57 illus., 56 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Schlagworte | Artificial Intelligence • Data Mining • hierarchical classification • hierarchical inconsistencies • large scale |
ISBN-10 | 3-030-01620-X / 303001620X |
ISBN-13 | 978-3-030-01620-3 / 9783030016203 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich