Applied Natural Language Processing with Python (eBook)
XV, 150 Seiten
Apress (Verlag)
978-1-4842-3733-5 (ISBN)
- Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim
- Manipulate and preprocess raw text data in formats such as .txt and .pdf
- Strengthen your skills in data science by learning both the theory and the application of various algorithms
Taweh Beysolow II is a Machine Learning Scientist and Author currently based in the United States. He has a Bachelor of Science degree in Economics from St. Johns University and a Master of Science in Applied Statistics from Fordham University. His professional experience has included applying machine learning and natural language processing techniques to financial, text (structured and unstructured), and social media data.
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment.What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and GensimManipulate and preprocess raw text data in formats such as .txt and .pdfStrengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn't feel that you need be an expert to understand the content.
Taweh Beysolow II is a Machine Learning Scientist and Author currently based in the United States. He has a Bachelor of Science degree in Economics from St. Johns University and a Master of Science in Applied Statistics from Fordham University. His professional experience has included applying machine learning and natural language processing techniques to financial, text (structured and unstructured), and social media data.
Chapter 1: What is Natural Language Processing? Chapter Goal: Establishing understanding of topic and give overview of textNo of pages: 10 pagesSub -Topics1. History of Natural Language Processing 2. Word Embeddings3. Neural Networks applied to Natural Language Processing 4. Python PackagesChapter 2: Review of Machine LearningChapter Goal: Discuss models that will be referenced in the textNo of pages: 30 pagesSub - Topics 1. Gradient Descent 2. Multi-Layer Perceptrons 3. Recurrent Neural Networks4. LSTM networksChapter 3: Working with Raw Text Chapter Goal: Introduce reader to the fundamental aspects of Natural Language Processing that will be utilized more heavily in the chapters regarding No of pages: 30Sub - Topics: 1. Word Tokenization 2. Preprocessing and cleaning of text data3. Web crawling w/ SpaCy4. Lemmas, N-grams, and other NATURAL LANGUAGE PROCESSING concepts Chapter 4: Word Embeddings and their applicationChapter Goal: Introduce reader to the use cases for word embeddings and the packages we utilize for themNo of pages: 50 Sub - Topics: 1. Word2Vec2. Doc2Vec3. GloVeChapter 5: Using Machine Learning w/ Natural language ProcessingChapter Goal: Give reader specific walkthroughs of advanced applications of Natural Language Processing using Machine Learning within greater applications (spellcheck and sentiment analysis)No of pages: 501. Tensorflow2. Keras3. Caffe
Erscheint lt. Verlag | 11.9.2018 |
---|---|
Zusatzinfo | XV, 150 p. 32 illus. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Caffee • Deep learning • Keras • machine learning • Natural Language Processing • Neural networks • Python • tensorflow |
ISBN-10 | 1-4842-3733-1 / 1484237331 |
ISBN-13 | 978-1-4842-3733-5 / 9781484237335 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich