Learn R for Applied Statistics - Eric Goh Ming Hui

Learn R for Applied Statistics

With Data Visualizations, Regressions, and Statistics
Buch | Softcover
243 Seiten
2018 | 1st ed.
Apress (Verlag)
978-1-4842-4199-8 (ISBN)
64,19 inkl. MwSt
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. 
Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. 
What You Will Learn

Discover R, statistics, data science, data mining, and big data

Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions

Work with descriptive statistics 

Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots

Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions



Who This Book Is For
Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.  

Eric Goh is a data scientist, software engineer, adjunct faculty and entrepreneur with years of experiences in multiple industries. His varied career includes data science, data and text mining, natural language processing, machine learning, intelligent system development, and engineering product design.Eric Goh has been leading his teams for various industrial projects, including the advanced product code classification system project which automates Singapore Custom’s trade facilitation process, and Nanyang Technological University's data science projects where he develop his own DSTK data science software. He has years of experience in C#, Java, C/C++, SPSS Statistics and Modeller, SAS Enterprise Miner, R, Python, Excel, Excel VBA and etc. He won Tan Kah Kee Young Inventors' Merit Award and Shortlisted Entry for TelR Data Mining Challenge. Eric Goh founded the SVBook website to offer affordable books, courses and software in data science and programming.  He holds a Masters of Technology degree from the National University of Singapore, an Executive MBA degree from U21Global (currently GlobalNxt) and IGNOU, a Graduate Diploma in Mechatronics from A*STAR SIMTech (a national research institute located in Nanyang Technological University), and Coursera Specialization Certificate in Business Statistics and Analysis from Rice University. He possessed a Bachelor of Science degree in Computing from the University of Portsmouth after National Service. He is also a AIIM Certified Business Process Management Master (BPMM), GSTF certified Big Data Science Analyst (CBDSA), and IES Certified Lecturer.

Chapter 1:  Introduction.- Chapter 2:  Getting Started.- Chapter 3: Basic .- Chapter 4: Descriptive Statistics.- Chapter 5: Data Visualizations.- Chapter 6: Inferential Statistics and Regressions.

Erscheinungsdatum
Zusatzinfo 111 Illustrations, black and white; XV, 243 p. 111 illus.
Verlagsort Berkley
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte data analytics • Data Exploration • Data Mining • Data Science • Data Vizualisation • machine learning • Natural Language Processing • R • Statistics
ISBN-10 1-4842-4199-1 / 1484241991
ISBN-13 978-1-4842-4199-8 / 9781484241998
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Hanspeter Mössenböck

Buch | Softcover (2024)
dpunkt (Verlag)
29,90
a beginner's guide to learning llvm compiler tools and core …

von Kai Nacke

Buch | Softcover (2024)
Packt Publishing Limited (Verlag)
49,85