Supervised Learning with Quantum Computers (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XIII, 287 Seiten
Springer International Publishing (Verlag)
978-3-319-96424-9 (ISBN)

Lese- und Medienproben

Supervised Learning with Quantum Computers - Maria Schuld, Francesco Petruccione
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.



Francesco Petruccione received his PhD (1988) and 'Habilitation' (1994) from the University of Freiburg, Germany. Since 2004 he is Professor of Theoretical Physics at the University of KwaZulu-Natal in Durban, Africa, where in 2007 he was granted a South African Research Chair for Quantum Information Processing and Communication from the National Research Foundation. He is the co-author of 'The theory of open quantum systems' (Oxford University Press, 2002) and has published more than 100 papers in refereed journals, adding up to more than 7000 citations. Francesco Petruccione's research focusses on quantum information and open quantum systems.

Maria Schuld received her PhD degree from the University of KwaZulu-Natal in South Africa in 2017 as a fellow of the German Academic Foundation. Her Master's degree was awarded by the Technical University of Berlin and supported through a scholarship of the German Academic Exchange Service (DAAD). Since 2013 she dedicates her research to the design of quantum machine learning algorithms, which she presented at numerous international conferences and in a range of research articles. Maria Schuld is a Post-Doc at the University of KwaZulu-Natal and works as a researcher for the Canadian-based quantum computing startup Xanadu.

Francesco Petruccione received his PhD (1988) and ”Habilitation” (1994) from the University of Freiburg, Germany. Since 2004 he is Professor of Theoretical Physics at the University of KwaZulu-Natal in Durban, Africa, where in 2007 he was granted a South African Research Chair for Quantum Information Processing and Communication from the National Research Foundation. He is the co-author of “The theory of open quantum systems” (Oxford University Press, 2002) and has published more than 100 papers in refereed journals, adding up to more than 7000 citations. Francesco Petruccione’s research focusses on quantum information and open quantum systems.Maria Schuld received her PhD degree from the University of KwaZulu-Natal in South Africa in 2017 as a fellow of the German Academic Foundation. Her Master’s degree was awarded by the Technical University of Berlin and supported through a scholarship of the German Academic Exchange Service (DAAD). Since 2013 she dedicates her research to the design of quantum machine learning algorithms, which she presented at numerous international conferences and in a range of research articles. Maria Schuld is a Post-Doc at the University of KwaZulu-Natal and works as a researcher for the Canadian-based quantum computing startup Xanadu.

Introduction.- Background.- How quantum computers can classify data.- Organisation of the book.-  Machine Learning.- Prediction.- Models.- Training.- Methods in machine learning.- Quantum Information.- Introduction to quantum theory.- Introduction to quantum computing.- An example: The Deutsch-Josza algorithm.- Strategies of information encoding.- Important quantum routines.- Quantum advantages.- Computational complexity of learning.- Sample complexity.- Model complexity.- Information encoding.-  Basis encoding.- Amplitude encoding.- Qsample encoding.- Hamiltonian encoding.- Quantum computing for inference.- Linear models.- Kernel methods.- Probabilistic models.- Quantum computing for training.-  Quantum blas.- Search and amplitude amplification.- Hybrid training for variational algorithms.- Quantum adiabatic machine learning.- Learning with quantum models.- Quantum extensions of Ising-type models.- Variational classifiers and neural networks.- Other approaches to build quantum models.- Prospects for near-term quantum machine learning.- Small versus big data.- Hybrid versus fully coherent approaches.- Qualitative versus quantitative advantages.- What machine learning can do for quantum computing.- References.

Erscheint lt. Verlag 30.8.2018
Reihe/Serie Quantum Science and Technology
Quantum Science and Technology
Zusatzinfo XIII, 287 p. 83 illus., 48 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte adiabatic quantum computing • Artificial Neural Network • belief nets • Boltzmann machines • data driven prediction • Deutsch-Josza algorithm • Grover search • hidden Markov models • Hopfield models • Kernel Methods • near term application • Qsample encoding • quantum annealing • quantum blas • quantum gates • Quantum inference • Quantum machine learning • quantum phase estimation • quantum walks
ISBN-10 3-319-96424-0 / 3319964240
ISBN-13 978-3-319-96424-9 / 9783319964249
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43