Algebraic and Analytic Microlocal Analysis
Springer International Publishing (Verlag)
978-3-030-01586-2 (ISBN)
Part I: Algebraic Microlocal Analysis.- Losev, I.: Procesi Bundles and Symplectic Re ection Algebras.- Schapira, P.: Three Lectures on Algebraic Microlocal Analysis.- Tamarkin, D.: Microlocal Condition for Non-displaceability.- Tsygan, B.: A Microlocal Category Associated to a Symplectic Manifold.- Part II: Analytic Microlocal Analysis.- Berman, R.: Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality.- Berndtsson, B.: Probability Measures Associated to Geodesics in the Space of Kahlermetrics.- Canzani, Y. and Toth, J: Intersection Bounds for Nodal Sets of Laplace Eigenfunctions.- Christ, M.: Upper Bounds for Bergman Kernels Associated to Positive Line Bundles with Smooth Hermitian Metrics.- Christ, M.: O -diagonal Decay of Bergman Kernels: On a Question of Zelditch.- Hitrik, M. and Sjostrand, J: Two Mini-courses on Analytic Microlocal Analysis.- Lebeau, G.: A Proof of a Result of L. Boutet de Monvel.- Martinez, A., Nakamura, S. and Sordoni, V: Propagation of Analytic Singularities for Short and Long Range Perturbations of the Free Schrodinger Equation.- Zelditch, S. and Zhou, P: Pointwise Weyl Law for Partial Bergman Kernels.- Zworski, M.: Scattering Resonances as Viscosity Limits.
Erscheinungsdatum | 07.12.2018 |
---|---|
Reihe/Serie | Springer Proceedings in Mathematics & Statistics |
Zusatzinfo | XVI, 654 p. 9 illus., 3 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1166 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | algebraic analysis • Fourier transform • Manifolds • microlocal analysis • Partial differential equations • wave front |
ISBN-10 | 3-030-01586-6 / 3030015866 |
ISBN-13 | 978-3-030-01586-2 / 9783030015862 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich