Monte Carlo and Quasi-Monte Carlo Methods (eBook)

MCQMC 2016, Stanford, CA, August 14-19

Art B. Owen, Peter W. Glynn (Herausgeber)

eBook Download: PDF
2018 | 1st ed. 2018
XI, 479 Seiten
Springer International Publishing (Verlag)
978-3-319-91436-7 (ISBN)

Lese- und Medienproben

Monte Carlo and Quasi-Monte Carlo Methods -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016.  These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. 

The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.

Part I Tutorials, Fred J. Hickernell, The Trio Identity for Quasi-Monte Carlo Error.- Pierre L’Ecuyer, Randomized Quasi-Monte Carlo: An Introduction for Practitioners.- Frances Y. Kuo and Dirk Nuyens, Application of Quasi-Monte Carlo Methods to PDEs with Random Coefficients – an Overview and Tutorial.- Part II Invited talks, Jose Blanchet and Zhipeng Liu, Malliavin-based Multilevel Monte Carlo Estimators for Densities of Max-stable Processes.- Nicolas Chopin and Mathieu Gerber, Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes.- Frances Y. Kuo and Dirk Nuyens, Hot New Directions for Quasi-Monte Carlo Research in Step with Applications.- Saul Toscano-Palmerin and Peter I. Frazier, Stratified Bayesian Optimization.- Part III Regular talks, Christoph Aistleitner, Dmitriy Bilyk, and Aleksandar Nikolov, Tusnady’s Problem, the Transference Principle, and Non-Uniform QMC Sampling.- Ken Dahm and Alexander Keller, Learning Light Transport the Reinforced Way.- Adrian Ebert, Hernan Leovey, and Dirk Nuyens, Successive Coordinate Search and Component-by-Component Construction of Rank-1 Lattice Rules.- Wei Fang and Michael B. Giles, Adaptive Euler-Maruyama method for SDEs with non-globally Lipschitz drift.- J. Feng and M. Huber and Y. Ruan, Monte Carlo with User-Specified Relative Error.- Robert N. Gantner, Dimension Truncation in QMC for Affine-Parametric Operator Equations.- Michael B. Giles, Frances Y. Kuo, and Ian H. Sloan, Combining Sparse Grids, Multilevel MC and QMC for Elliptic PDEs with Random Coefficients.- Hiroshi Haramoto and Makoto Matsumoto, A Method to Compute an Appropriate Sample Size of a Two-Level Test for the NIST Test Suite.- Stefan Heinrich, Lower Complexity Bounds for Parametric Stochastic Itoˆ Integration.- Lukas Herrmann and Christoph Schwab, QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs.- Masatake Hirao, QMC Designs and Determinantal Point Processes.- Adam W. Kolkiewicz, Efficient Monte Carlo For Diffusion Processes Using Ornstein-Uhlenbeck Bridges.- Ralph Kritzinger, Optimal Discrepancy Rate of Point Sets in Besov Spaces with Negative Smoothness.- Ralph Kritzinger, Helene Laimer, and Mario Neumuller, A Reduced Fast Construction of Polynomial Lattice Point Sets with Low Weighted Star Discrepancy.- David Mandel and Giray Okten, Randomized Sobol’ Sensitivity Indices.- Hisanari Otsu, Shinichi Kinuwaki, and Toshiya Hachisuka, Supervised Learning of How to Blend Light Transport Simulations.- Pieterjan Robbe, Dirk Nuyens, and Stefan Vandewalle, A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger.- Shuang Zhao, Rong Kong, and Jerome Spanier, Towards Real-Time Monte Carlo for Biomedicine.- Zeyu Zheng, Jose Blanchet, and Peter W. Glynn, Rates of Convergence and CLTs for Subcanonical Debiased MLMC.

Erscheint lt. Verlag 3.7.2018
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Springer Proceedings in Mathematics & Statistics
Zusatzinfo XI, 479 p. 66 illus., 45 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Schlagworte Bayesian Computation • Computational Complexity • Cubature • discrepancy • Graphical Rendering • Importance Sampling • lattice rules • Markov Chain Monte Carlo • Monte Carlo • Multilevel Monte Carlo • Probabilistic Numerics • quadrature • quasi-Monte Carlo • Sequential Monte Carlo • Simulation • Stochastic Computation
ISBN-10 3-319-91436-7 / 3319914367
ISBN-13 978-3-319-91436-7 / 9783319914367
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich