Orthogonal Latin Squares Based on Groups (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XV, 537 Seiten
Springer International Publishing (Verlag)
978-3-319-94430-2 (ISBN)

Lese- und Medienproben

Orthogonal Latin Squares Based on Groups - Anthony B. Evans
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall-Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry.  

The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall-Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems.  

Expanding the author's 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory-more advanced theories are introduced in the text as needed. 



?Anthony B. Evans is Professor of Mathematics at Wright State University in Dayton, Ohio. Since the mid 1980s, his primary research has been on orthomorphisms and complete mappings of finite groups and their applications. These mappings arise in the study of mutually orthogonal latin squares that are derived from the multiplication tables of finite groups. As an offshoot of this research, he has also worked on graph representations. His previous book, Orthomorphism Graphs of Groups (1992), appeared in the series, Lecture Notes in Mathematics.

​Anthony B. Evans is Professor of Mathematics at Wright State University in Dayton, Ohio. Since the mid 1980s, his primary research has been on orthomorphisms and complete mappings of finite groups and their applications. These mappings arise in the study of mutually orthogonal latin squares that are derived from the multiplication tables of finite groups. As an offshoot of this research, he has also worked on graph representations. His previous book, Orthomorphism Graphs of Groups (1992), appeared in the series, Lecture Notes in Mathematics.

Part I Introduction.- Latin Squares Based on Groups.- When is a Latin Square Based on a Group?.- Part II Admissable Groups.- The Existence Problem for Complete Mappings: The Hall-Paige Conjecture.- Some Classes of Admissible Groups.- The Groups GL(n,q), SL(n,q), PGL(n,q), and PSL(n,q).- Minimal Counterexamples to the Hall-Paige Conjecture.- A Proof of the Hall-Paige Conjecture.- Part III Orthomorphism Graphs of Groups.- Orthomorphism Graphs of Groups.- Elementary Abelian Groups I.- Elementary Abelian Groups II.- Extensions of Orthomorphism Graphs.- ω(G) for Some Classes of Nonabelian Groups.- Groups of Small Order.- Part IV Additional Topics.- Projective Planes from Complete Sets of Orthomorphisms.- Related Topics.- Problems.- References.- Index.

Erscheint lt. Verlag 17.8.2018
Reihe/Serie Developments in Mathematics
Developments in Mathematics
Zusatzinfo XV, 537 p. 90 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte combinatorics • complete mapping • Difference matrix • finite field • finite group • latin square • MOLS • orthogonality • Orthomorphism
ISBN-10 3-319-94430-4 / 3319944304
ISBN-13 978-3-319-94430-2 / 9783319944302
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99