Apache Hive Essentials (eBook)
210 Seiten
Packt Publishing (Verlag)
978-1-78913-651-7 (ISBN)
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive.
Key FeaturesGrasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystemUses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3Book Description
In this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment.
Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey.
By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems
What you will learnCreate and set up the Hive environmentDiscover how to use Hive's definition language to describe dataDiscover interesting data by joining and filtering datasets in HiveTransform data by using Hive sorting, ordering, and functionsAggregate and sample data in different waysBoost Hive query performance and enhance data security in HiveCustomize Hive to your needs by using user-defined functions and integrate it with other toolsWho this book is for
If you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.
Dayong Du is a big data practitioner, author, and coach with over 10 years' experience in technology consulting, designing, and implementing enterprise big data architecture and analytics in various industries, including finance, media, travel, and telecoms. He has a master's degree in computer science from Dalhousie University and is a Cloudera certified Hadoop developer. He is a cofounder of Toronto Big Data Professional Association and the founder of DataFiber website.
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive.About This BookGrasp the skills needed to write efficient Hive queries to analyze the Big DataDiscover how Hive can coexist and work with other tools within the Hadoop ecosystemUses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3Who This Book Is ForIf you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.What You Will LearnCreate and set up the Hive environmentDiscover how to use Hive's definition language to describe dataDiscover interesting data by joining and filtering datasets in HiveTransform data by using Hive sorting, ordering, and functionsAggregate and sample data in different waysBoost Hive query performance and enhance data security in HiveCustomize Hive to your needs by using user-defined functions and integrate it with other toolsIn DetailIn this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment.Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey.By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problemsStyle and approachThis book takes on a practical approach which will get you familiarized with Apache Hive and how to use it to efficiently to find solutions to your big data problems. This book covers crucial topics like performance, and data security in order to help you make the most of the Hive working environment.
Erscheint lt. Verlag | 30.6.2018 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Schlagworte | Apache • Big Data • Data manipulation • Hive |
ISBN-10 | 1-78913-651-2 / 1789136512 |
ISBN-13 | 978-1-78913-651-7 / 9781789136517 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 2,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich