Pro Machine Learning Algorithms - V Kishore Ayyadevara

Pro Machine Learning Algorithms (eBook)

A Hands-On Approach to Implementing Algorithms in Python and R
eBook Download: PDF
2018 | 1st ed.
XXI, 372 Seiten
Apress (Verlag)
978-1-4842-3564-5 (ISBN)
Systemvoraussetzungen
66,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.

You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.

You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. 

What You Will Learn
  • Get an in-depth understanding of all the major machine learning and deep learning algorithms 
  • Fully appreciate the pitfalls to avoid while building models
  • Implement machine learning algorithms in the cloud 
  • Follow a hands-on approach through case studies for each algorithm
  • Gain the tricks of ensemble learning to build more accurate models
  • Discover the basics of programming in R/Python and the Keras framework for deep learning
Who This Book Is For

Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.




V Kishore Ayyadevara currently leads retail analytics consulting in a start-up. He received his MBA from IIM Calcutta. Following that, he worked for American Express in risk management and in Amazon's supply chain analytics teams. He is passionate about leveraging data to make informed decisions - faster and more accurately. Kishore's interests include identifying business problems that can be solved using data, simplifying the complexity within data science and applying data science to achieve quantifiable business results.


Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will LearnGet an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building modelsImplement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithmGain the tricks of ensemble learning to build more accurate modelsDiscover the basics of programming in R/Python and the Keras framework for deep learningWho This Book Is ForBusiness analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

V Kishore Ayyadevara currently leads retail analytics consulting in a start-up. He received his MBA from IIM Calcutta. Following that, he worked for American Express in risk management and in Amazon's supply chain analytics teams. He is passionate about leveraging data to make informed decisions - faster and more accurately. Kishore's interests include identifying business problems that can be solved using data, simplifying the complexity within data science and applying data science to achieve quantifiable business results.

Chapter 1:  Basic statisticsChapter Goal: Build the statistical foundation for machine learning No of pages    : 20Sub -Topics1.      Introduction to various statistical functions1.      Introduction to distributions2.      Hypothesis testing3.      Case classesChapter 2: Linear regression Chapter Goal: Help the reader master linear regression with the theory & practical conceptsNo of pages: 25Sub - Topics   1.      Introduction to regression  2.      Least squared error3.      Implementing linear regression in Excel & R & Python4.      Measuring errorChapter 3: Logistic regressionChapter Goal: Help the reader master logistic regression with the theory & practical concepts No of pages: 25Sub - Topics:  1.      Introduction to logistic regression  2.      Cross entropy error3.      Implementing logistic regression in Excel & R & Python4.      Area under the curve calculationChapter 4:  Decision treeChapter Goal: Help the reader master decision tree with the theory & practical concepts No of pages: 40Sub - Topics: 1.      Introduction to decision tree  2.      Information gain3.      Decision tree for classification & regression4.      Implementing decision tree in Excel & R & Python5.      Measuring errorChapter 5: Random forestChapter Goal: Help the reader master random forests with the theory & practical concepts No of pages: 15Sub - Topics: 1.      Moving from decision tree to random forests2.      Implement random forest in R & Python using decision tree functionalities Chapter 6: GBMChapter Goal: Help the reader master GBM with the theory & practical concepts No of pages: 20Sub - Topics:  1.      Understanding gradient boosting process2.      Difference between gradient boost & adaboost3.      Implement GBM in R & Python using decision tree functionalities Chapter 7: Neural networkChapter Goal: Help the reader master neural network with the theory & practical conceptsNo of pages: 30Sub - Topics: 1.      Forward propagation2.      Backward propagation3.      Impact of epochs and learning rate4.      Implement Neural network in Excel, R & Python Chapter 8: Convolutional neural networkChapter Goal: Help the reader master CNN with the theory & practical conceptsNo of pages: 30Sub - Topics: 1.      Moving from NN to CNN2.      Key parameters within CNN3.      Implement CNN in Excel & Python Chapter 9: RNNChapter Goal: Help the reader master RNN with the theory & practical conceptsNo of pages: 25Sub - Topics:  1.      Need for RNN2.      Key variations of RNN3.      Implementing RNN in Excel & Python Chapter 10: word2vecChapter Goal: Help the reader master word2vec with the theory & practical conceptsNo of pages: 201.      Need for word2vec2.      Implementing word2vec in Excel & PythonChapter 11: Unsupervised learning - clusteringChapter Goal: Help the reader master clustering with the theory & practical conceptsNo of pages: 15Sub - Topics: 1.      k-Means clustering2.      Hierarchical clustering3.      Implement clustering in Excel, R & PythonChapter 12: PCAChapter Goal: Help the reader master PCA with the theory & practical conceptsNo of pages: 15Sub - Topics: 1.      Dimensionality reduction using PCA2.      Implement PCA in Excel, R & PythonChapter 13: Recommender systemsChapter Goal: Help the reader master recommender systems with the theory & practical conceptsNo of pages: 25Sub - Topics: 1.      user based collaborative filtering2.      Item based collaborative filtering3.      Matrix factorization4.      Implementing the above algorithms in Excel, R & PythonChapter 14: Implement algorithms in the cloudChapter Goal: Help the reader understand the ways to implement algorithms in the cloudNo of pages: 30Sub - Topics: 1.      Implementing machine learning algorithms in AWS2.      Implementing machine learning algorithms in Azure3.      Implementing machine learning algorithms in GCP

Erscheint lt. Verlag 30.6.2018
Zusatzinfo XXI, 372 p. 359 illus.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Decision Tree • linear regression • Logistic Regression • machine learning • neural network • Python • R
ISBN-10 1-4842-3564-9 / 1484235649
ISBN-13 978-1-4842-3564-5 / 9781484235645
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99