Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow
Concepts, Tools, and Techniques to Build Intelligent Systems
Seiten
2019
|
2nd New edition
O'Reilly Media (Verlag)
978-1-4920-3264-9 (ISBN)
O'Reilly Media (Verlag)
978-1-4920-3264-9 (ISBN)
- Titel gebraucht verfügbar
- Artikel merken
...gebraucht verfügbar!
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurelien Geron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Explore the machine learning landscape, particularly neural nets
Use Scikit-Learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
Learn techniques for training and scaling deep neural nets
By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurelien Geron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Explore the machine learning landscape, particularly neural nets
Use Scikit-Learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
Learn techniques for training and scaling deep neural nets
Aurelien Geron is a Machine Learning consultant, author of the O'Reilly book Hands-on Machine Learning with Scikit-Learn and TensorFlow. A former Googler, he led YouTube's video classification team from 2013 to 2016. He was also a founder and CTO of Wifirst from 2002 to 2012, a leading Wireless ISP in France, and a founder and CTO of Polyconseil in 2001, the firm that now manages the electric car sharing service Autolib. Before this, he worked as a software engineer in a variety of domains: finance, defense, health care, and more.
Erscheinungsdatum | 14.10.2019 |
---|---|
Verlagsort | Sebastopol |
Sprache | englisch |
Maße | 178 x 233 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-4920-3264-6 / 1492032646 |
ISBN-13 | 978-1-4920-3264-9 / 9781492032649 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Schulbuch Klassen 7/8 (G9)
Buch | Hardcover (2015)
Klett (Verlag)
31,50 €
Buch | Softcover (2004)
Cornelsen Verlag
25,99 €