Flat Covers of Modules
Seiten
1996
|
1996
Springer Berlin (Verlag)
978-3-540-61640-5 (ISBN)
Springer Berlin (Verlag)
978-3-540-61640-5 (ISBN)
Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.
Envelopes and covers.- Fundamental theorems.- Flat covers and cotorsion envelopes.- Flat covers over commutative rings.- Applications in commutative rings.
Erscheint lt. Verlag | 2.10.1996 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | X, 162 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 216 x 279 mm |
Gewicht | 269 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Algebra • Commutative Ring • Field • Homological algebra • Modul (math.) • Ring Theory • Torsion |
ISBN-10 | 3-540-61640-3 / 3540616403 |
ISBN-13 | 978-3-540-61640-5 / 9783540616405 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
54,95 €
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
109,95 €