Big-Data Analytics and Cloud Computing -

Big-Data Analytics and Cloud Computing

Theory, Algorithms and Applications
Buch | Softcover
XVI, 169 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-79767-0 (ISBN)
128,39 inkl. MwSt
This book reviews the theoretical concepts, leading-edge techniques and practical tools involved in the latest multi-disciplinary approaches addressing the challenges of big data. Illuminating perspectives from both academia and industry are presented by an international selection of experts in big data science. Topics and features: describes the innovative advances in theoretical aspects of big data, predictive analytics and cloud-based architectures; examines the applications and implementations that utilize big data in cloud architectures; surveys the state of the art in architectural approaches to the provision of cloud-based big data analytics functions; identifies potential research directions and technologies to facilitate the realization of emerging business models through big data approaches; provides relevant theoretical frameworks, empirical research findings, and numerous case studies; discusses real-world applications of algorithms and techniques to address the challenges of big datasets.

The editors are all members of the Computing and Mathematics Department at the University of Derby, UK, where Dr. Marcello Trovati serves as a Senior Lecturer in Mathematics, Dr. Richard Hill as a Professor and Head of the Computing and Mathematics Department, Dr. Ashiq Anjum as a Professor of Distributed Computing, Dr. Shao Ying Zhu as a Senior Lecturer in Computing, and Dr. Lu Liu as a Professor of Distributed Computing. The other publications of the editors include the Springer titles Guide to Security Assurance for Cloud Computing, Guide to Cloud Computing and Cloud Computing for Enterprise Architectures.

Part I: Theory.- Data Quality Monitoring of Cloud Databases Based on Data Quality SLAs.- Role and Importance of Semantic Search in Big Data Governance.- Multimedia Big Data: Content Analysis and Retrieval.- An Overview of Some Theoretical Topological Aspects of Big Data.- Part II: Applications.- Integrating Twitter Traffic Information with Kalman Filter Models for Public Transportation Vehicle Arrival Time Prediction.- Data Science and Big Data Analytics at CareerBuilder.- Extraction of Bayesian Networks from Large Unstructured Datasets.- Two Case Studies Based on Large Unstructured Sets.- Information Extraction from Unstructured Datasets: An Application to Cardiac Arrhythmia Detection.- A Platform for Analytics on Social Networks Derived from Organizational Calendar Data.

Erscheinungsdatum
Zusatzinfo XVI, 169 p. 67 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 296 g
Themenwelt Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Analytics • Big Data • Cloud Computing • Distributed Systems • Simulation and modeling
ISBN-10 3-319-79767-0 / 3319797670
ISBN-13 978-3-319-79767-0 / 9783319797670
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch für den Einstieg in die Netzwerktechnik

von Martin Linten; Axel Schemberg; Kai Surendorf

Buch | Hardcover (2023)
Rheinwerk (Verlag)
29,90
das Praxisbuch für Admins und DevOps-Teams

von Michael Kofler

Buch | Hardcover (2023)
Rheinwerk (Verlag)
39,90