Introduction to Analysis (eBook)
272 Seiten
Dover Publications (Verlag)
978-0-486-13468-0 (ISBN)
This well-written text provides excellent instruction in basic real analysis, giving a solid foundation for direct entry into advanced work in such fields as complex analysis, differential equations, integration theory, and general topology. The nominal prerequisite is a year of calculus, but actually nothing is assumed other than the axioms of the real number system. Because of its clarity, simplicity of exposition, and stress on easier examples, this material is accessible to a wide range of students, of both mathematics and other fields.Chapter headings include notions from set theory, the real number system, metric spaces, continuous functions, differentiation, Riemann integration, interchange of limit operations, the method of successive approximations, partial differentiation, and multiple integrals.Following some introductory material on very basic set theory and the deduction of the most important properties of the real number system from its axioms, Professor Rosenlicht gets to the heart of the book: a rigorous and carefully presented discussion of metric spaces and continuous functions, including such topics as open and closed sets, limits and continuity, and convergent sequence of points and of functions. Subsequent chapters cover smoothly and efficiently the relevant aspects of elementary calculus together with several somewhat more advanced subjects, such as multivariable calculus and existence theorems. The exercises include both easy problems and more difficult ones, interesting examples and counter examples, and a number of more advanced results.Introduction to Analysis lends itself to a one- or two-quarter or one-semester course at the undergraduate level. It grew out of a course given at Berkeley since 1960. Refinement through extensive classroom use and the author’s pedagogical experience and expertise make it an unusually accessible introductory text.
Erscheint lt. Verlag | 4.5.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Sprache | englisch |
Maße | 140 x 140 mm |
Gewicht | 306 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | abstract algebra • Advanced Calculus • advanced concepts • advanced math • algebra class • Algebraic • algebra text • analysis class • apostol • Axioms • books on abstract algebras • books on advanced calculus • books on advanced concepts • books on advanced maths • books on algebra classes • books on algebra texts • books on analysis classes • books on education majors • books on functional analysis • books on galois theories • books on graph theories • books on information theories • books on integrals • books on introductory texts • books on level maths • books on liberal arts • books on linear algebras • books on mathematical analysis • books on mathematical notations • books on math students • books on math textbooks • books on math texts • books on pure mathematics • books on self studies • books on self-studies • books on theory classes • combinatorial • combinatorics • Compactness • Definitions • Differentiation • education majors • Equations • Exercises • foote • Functional Analysis • Functions • Galois Theory • graph theory • highly disorganized • Information Theory • integrals • introductory texts • Lebesgue • level math • Liberal Arts • linear algebra • Mathematical Analysis • mathematical background • mathematically • Mathematical Notation • math student • math textbook • math texts • metric • one-semester • Partitions • Permutation • Pinter • pleasant memories • polynomial • primitive roots • proofs • Pure Mathematics • Quadratic • Quotient • Riemann • Rigorous • self study • Self-study • Spaces • statements concerning • Theorems • theory class • Topological • Topology • undergrad • undergraduate • wait awhile • waiting awhile |
ISBN-10 | 0-486-13468-7 / 0486134687 |
ISBN-13 | 978-0-486-13468-0 / 9780486134680 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich