Einführung in TensorFlow -  Tom Hope,  Yehezkel S. Resheff,  Itay Lieder

Einführung in TensorFlow (eBook)

Deep-Learning-Systeme programmieren, trainieren, skalieren und deployen
eBook Download: PDF
2018 | 1. Auflage
238 Seiten
O'Reilly Verlag
978-3-96010-180-2 (ISBN)
Systemvoraussetzungen
32,90 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Deep-Learning-Netze, die mit großen Datenmengen angelernt wurden, lösen komplexe Aufgaben mit erstaunlicher Genauigkeit. TensorFlow ist die führende Open-Source-Bibliothek zum Erstellen und Trainieren neuronaler Deep-Learning-Netze z.B. für die Sprach- und Bilderkennung, die Verarbeitung natürlicher Sprache (NLP) oder die vorhersagende Datenanalyse. Dieses Buch bietet einer breiten technisch orientierten Leserschaft einen praxisnahen Zugang zu den Grundlagen von TensorFlow. Sie erarbeiten zunächst einige einfache Beispielaufgaben mit TensorFlow und tauchen anschließend tiefer in Themen ein wie die Architektur neuronaler Netze, die Visualisierung mit TensorBoard, Abstraktionsbibliotheken für TensorFlow oder Multithread-Pipelines zur Dateneingabe. Wenn Sie dieses Buch durchgearbeitet haben, sind Sie in der Lage, Deep-Learning-Systeme mit TensorFlow zu erstellen und im Produktivbetrieb einzusetzen.

Tom Hope ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und ein Datenanalyst mit umfangreichen Erfahrungen in der akademischen Welt und der Industrie. Er hat auf verschiedenen Anwendungsgebieten Forschungs- und Entwicklungsprojekte zu Datenanalyse und Deep Learning geleitet. Yehezkel S. Resheff forscht zu angewandter Datenanalyse. Seine Dissertation beschäftigte sich mit maschinellem Lernen und Lernmethoden für tragbare Geräte und dem Internet der Dinge. Er hat in der Vergangenheit Forschungs- und Entwicklungsprojekte zu Deep Learning bei Intel und Microsoft geleitet. Itay Lieder ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und der Computer-Neurowissenschaft. Für seine Abschlussarbeit entwickelte er Algorithmen zur Modellierung  grundlegender Wahrnehmungsvorgänge. Er hat innovative Forschungs- und Entwicklungsprojekte zu Deep Learning für Textanalyse und Web-Mining bei großen internationalen Firmen geleitet.

Tom Hope ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und ein Datenanalyst mit umfangreichen Erfahrungen in der akademischen Welt und der Industrie. Er hat auf verschiedenen Anwendungsgebieten Forschungs- und Entwicklungsprojekte zu Datenanalyse und Deep Learning geleitet. Yehezkel S. Resheff forscht zu angewandter Datenanalyse. Seine Dissertation beschäftigte sich mit maschinellem Lernen und Lernmethoden für tragbare Geräte und dem Internet der Dinge. Er hat in der Vergangenheit Forschungs- und Entwicklungsprojekte zu Deep Learning bei Intel und Microsoft geleitet. Itay Lieder ist Forscher auf dem Gebiet des angewandten maschinellen Lernens und der Computer-Neurowissenschaft. Für seine Abschlussarbeit entwickelte er Algorithmen zur Modellierung  grundlegender Wahrnehmungsvorgänge. Er hat innovative Forschungs- und Entwicklungsprojekte zu Deep Learning für Textanalyse und Web-Mining bei großen internationalen Firmen geleitet.

Erscheint lt. Verlag 15.5.2018
Reihe/Serie Animals
Animals
Übersetzer Kristian Rother
Verlagsort Heidelberg
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte AI • Algorithmen • Artificial Intelligence • Data Science • Deep learning • KI • Künstliche Intelligenz • machine learning • Maschinelles Lernen • Neuronale Netze • NumPy • Python • Statistische Datenanalyse • tensorflow
ISBN-10 3-96010-180-5 / 3960101805
ISBN-13 978-3-96010-180-2 / 9783960101802
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

eBook Download (2024)
De Gruyter (Verlag)
64,95
Mit über 150 Workouts in Java und Python

von Luigi Lo Iacono; Stephan Wiefling; Michael Schneider

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Mit über 150 Workouts in Java und Python

von Luigi Lo Iacono; Stephan Wiefling; Michael Schneider

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99