Von Data Mining bis Big Data
Hanser, Carl (Verlag)
978-3-446-45550-4 (ISBN)
Eine wichtige Säule von Industrie 4.0 ist Big Data. Hierbei geht es um die intelligente Verwertung riesiger Datenmengen mit dem Ziel Prozesse besser zu beherrschen oder neue Geschäftsfelder zu finden. Big Data für sich zu erschließen bedeutet nichts anderes als einen Schatz zu heben, der in der Fülle von Informationen, die Sie in Ihrem Unternehmen anhäufen, verborgen liegt. Dieses Buch enthält die Schatzkarte.
Hier erfahren Sie:
- wie mit Hilfe von Data Mining-Techniken unbekannte Zusammenhänge und Strukturen über den datenliefernden Prozess entdeckt werden können
- wie mit den gewonnenen Erkenntnissen detaillierte Vorhersagen über das zukünftige Prozessverhalten und Strategien zur Optimierung ganzer Fabriken abgeleitet werden
- welche Tools und Plattformen es gibt, um Big Data wirtschaftlich sinnvoll in Ihr Unternehmen einzuführen
- wie andere Firmen aus verschiedensten Branchen mit Big Data erfolgreiche Effizienzsteigerungen erreicht haben
Wenn Sie sich im Rahmen der aktuell laufenden Digitalisierungswelle fragen, welche der modernen Techniken wofür genutzt werden können oder müssen, um den Anschluss nicht zu verpassen, dann ist dieses Buch genau das richtige für Sie.
Prof. Dr. Ralf Otte leitet die Lehre im Bereich Künstliche Intelligenz im Masterstudium an der Hochschule Ulm.
Prof. Dr. Viktor Otte ist ehemaliger Lehrstuhlinhaber an der Universität Wuppertal und begleitete eine Vielzahl der Industrieprojekte als Data Mining Berater.
Boris Wippermann ist bei der h&z Unternehmensberatung AG in München tätig.
1. Der Data Mining und Big Data Prozess
2. Methoden und Technologien
- Beschreibung der klassischen Datenanalyse Verfahren (Data Mining, Text Mining)
- Beschreibung der klassischen KI-Verfahren
- Big Data Ansätze
- deep learning
- Tools, Plattformen, open sources
- Trends und zukünftige Entwicklungen
3. Systematik der Anwendungen
- Finden von Zusammenhängen und Strukturen
- Data Mining und Einordnung in Industrie 4.0
- die neue Digitalisierungswelle
4. Anwendungsbeispiele aus der Praxis
- Chemische Industrie
- Automobilindustrie
- Maschinen- und Anlagenbau
- Versicherungen
- Autonomes Fahren
5. Ausblick
"...liefern die Autoren einen guten Überblick, was für die fortgeschrittene Datenverarbeitung notwendig ist, welche Möglichkeiten und Einsatzgebiete es gibt und was man in großen Datenverarbeitungsprojekten berücksichtigen sollte, um Fehler möglichst zu vermeiden." Jan Tittel, dotnetpro, Januar 2021
"Dieses Buch präsentiert Ihnen praxisnahe Vorgehensmodelle zur Digitalisierung der Produktion. Sie lernen verfügbare Methoden, Technologien und Standards kennen. Damit ist es eine wertvolle Orientierungshilfe für alle verantwortlichen Entscheidungsträger." automotiveIT, Dezember 2019
»Dieses Buch präsentiert Ihnen praxisnahe Vorgehensmodelle zur Digitalisierung der Produktion. Sie lernen verfügbare Methoden, Technologien und Standards kennen. Damit ist es eine wertvolle Orientierungshilfe für alle verantwortlichen Entscheidungsträger.« automotiveIT, Dezember 2019
1. Der Data Mining und Big Data Prozess
2. Methoden und Technologien
- Beschreibung der klassischen Datenanalyse Verfahren (Data Mining, Text Mining)
- Beschreibung der klassischen KI-Verfahren
- Big Data Ansätze
- deep learning
- Tools, Plattformen, open sources
- Trends und zukünftige Entwicklungen
3. Systematik der Anwendungen
- Finden von Zusammenhängen und Strukturen
- Data Mining und Einordnung in Industrie 4.0
- die neue Digitalisierungswelle
4. Anwendungsbeispiele aus der Praxis
- Chemische Industrie
- Automobilindustrie
- Maschinen- und Anlagenbau
- Versicherungen
- Autonomes Fahren
5. Ausblick
Erscheinungsdatum | 02.07.2020 |
---|---|
Verlagsort | München |
Sprache | deutsch |
Maße | 180 x 247 mm |
Gewicht | 1188 g |
Einbandart | Kunststoff |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Schlagworte | Artificial Intelligence • Big Data • Cloud Computing • Clusteranalyse • Data Mining • Datenhaltung • Datenmanagement • Datenverarbeitung • digitale Transformation • Digitalisierung • Industrie 4.0 • Künstliche Intelligenz • Künstliche Intelligenz • Maschinelles Lernen • Neuronale Netze • Small data • Versuchsplanung |
ISBN-10 | 3-446-45550-7 / 3446455507 |
ISBN-13 | 978-3-446-45550-4 / 9783446455504 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich