Pseudodifferential Methods in Number Theory - André Unterberger

Pseudodifferential Methods in Number Theory

Buch | Softcover
VI, 173 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-92706-0 (ISBN)
69,54 inkl. MwSt

Classically developed as a tool for partial differential equations, the analysis of operators known as pseudodifferential analysis is here regarded as a possible help in questions of arithmetic. The operators which make up the main subject of the book can be characterized in terms of congruence arithmetic. They enjoy a Eulerian structure, and are applied to the search for new conditions equivalent to the Riemann hypothesis. These consist in the validity of certain parameter-dependent estimates for a class of Hermitian forms of finite rank. The Littlewood criterion, involving sums of Möbius coefficients, and the Weil so-called explicit formula, which leads to his positivity criterion, fit within this scheme, using in the first case Weyl's pseudodifferential calculus, in the second case Fuchs'. 

The book should be of interest to people looking for new possible approaches to the Riemann hypothesis, also to newperspectives on pseudodifferential analysis and on the way it combines with modular form theory. Analysts will have no difficulty with the arithmetic aspects, with which, save for very few exceptions, no previous acquaintance is necessary.

Introduction - The basic tools.- Some measures and distributions in the plane.- Pseudodifferential arithmetic and Euler decompositions.- The role of modular forms.- Line measures and modular distributions.- Arithmetic and the Fuchs calculus.- A possible approach to the Riemann hypothesis?

"The book is devoted to applications of pseudodifferential calculus to analytic number theory, aimed to new approaches to the Riemann hypothesis (RH). ... The book by A. Unterberger will be interesting and useful both for number theorists looking for new techniques, and for specialists in pseudodifferential operators interested in new application areas." (Anatoly N. Kochubei, zbMath 1411.11004, 2019)

Erscheinungsdatum
Reihe/Serie Pseudo-Differential Operators
Zusatzinfo VI, 173 p.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Gewicht 312 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte approach to the zeros of Riemann's zeta function • modular distribution theory • Number Theory • Partial differential equations • pseudodifferential analysis in arithmetic • Weyl and Fuchs pseudodifferential calculi
ISBN-10 3-319-92706-X / 331992706X
ISBN-13 978-3-319-92706-0 / 9783319927060
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99