An Extension of Casson's Invariant. (AM-126), Volume 126
Seiten
1992
Princeton University Press (Verlag)
978-0-691-02532-2 (ISBN)
Princeton University Press (Verlag)
978-0-691-02532-2 (ISBN)
- Lieferbar (Termin unbekannt)
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case.
This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.
This book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M.
*Frontmatter, pg. i*Contents, pg. v*0. Introduction, pg. 1*1. Topology of Representation Spaces, pg. 6*2. Definition of lambda, pg. 27*3. Various Properties of lambda, pg. 41*4. The Dehn Surgery Formula, pg. 81*5. Combinatorial Definition of lambda, pg. 95*6. Consequences of the Dehn Surgery Formula, pg. 108*A. Dedekind Sums, pg. 113*B. Alexander Polynomials, pg. 122*Bibliography, pg. 129
Erscheint lt. Verlag | 23.3.1992 |
---|---|
Reihe/Serie | Annals of Mathematics Studies |
Verlagsort | New Jersey |
Sprache | englisch |
Maße | 152 x 235 mm |
Gewicht | 198 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 0-691-02532-0 / 0691025320 |
ISBN-13 | 978-0-691-02532-2 / 9780691025322 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich