Algebraic Geometry IV -

Algebraic Geometry IV

Linear Algebraic Groups Invariant Theory
Buch | Hardcover
X, 286 Seiten
1994 | 1994
Springer Berlin (Verlag)
978-3-540-54682-5 (ISBN)
149,79 inkl. MwSt

Dieser EMS-Band, der Beiträge zu eng verwandten Gebieten enthält, wird als Nachschlagewerk und Führer zur aktuellen Forschung sehr nützlich sein. Springer ist ein bekannter Spezialist auf seinem Gebiet. Popov und Vinberg gehören zu den aktivsten Forschern in der Invariantentheorie.
The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.

Contents : Linear Algebraic Groups by T.A. Springer.- Invariant Theory by V.L. Popov and E.B. Vinberg.

Erscheint lt. Verlag 25.4.1994
Reihe/Serie Encyclopaedia of Mathematical Sciences
Co-Autor V.L. Popov, T.A. Springer, E.B. Vinberg
Zusatzinfo X, 286 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 590 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebra • Algebraische Geometrie • Invariantentheorie • Invariant theory • linear algebra • linear algebraic groups • lineare algebraische Gruppen • Quotientenvarietät • quotient variety • reductive group • reduktive Gruppe • root system • theoretical physics • Wurzelsystem
ISBN-10 3-540-54682-0 / 3540546820
ISBN-13 978-3-540-54682-5 / 9783540546825
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95