The Geometric Hopf Invariant and Surgery Theory (eBook)
XVI, 397 Seiten
Springer International Publishing (Verlag)
978-3-319-71306-9 (ISBN)
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds.
Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists.
Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.1 The difference construction.- 2 Umkehr maps and inner product spaces.- 3 Stable homotopy theory.- 4 Z_2-equivariant homotopy and bordism theory.- 5 The geometric Hopf invariant.- 6 The double point theorem.- 7 The -equivariant geometric Hopf invariant.- 8 Surgery obstruction theory.- A The homotopy Umkehr map.- B Notes on Z2-bordism.- C The geometric Hopf invariant and double points (2010).- References.- Index.
Erscheint lt. Verlag | 24.1.2018 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XVI, 397 p. 1 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | algebraic surgery • bordism theory • coordinate-free approach to stable homotopy theory • difference construction chain homotopy • difference construction homotopy • doube points of maps • double point theorem • geometric Hopf invariant • Inner product spaces • Manifolds • MSC (2010): 55Q25, 57R42 • stable homotopy theory • surgery obstruction theory • Z_2 equivariant homotopy |
ISBN-10 | 3-319-71306-X / 331971306X |
ISBN-13 | 978-3-319-71306-9 / 9783319713069 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich