Simple Relation Algebras (eBook)
XXIV, 622 Seiten
Springer International Publishing (Verlag)
978-3-319-67696-8 (ISBN)
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics.
The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatment in author Steven Givant's textbook, Introduction to Relation Algebras (Springer, 2017).
Steven Givant is a Professor of Mathematics and Computer Science at Mills College, California. As a long-term collaborator of Alfred Tarski-one of the great logicians-Givant has been involved first-hand in the development of the field of relation algebras since the 1970s. His other books include Introduction to Relation Algebras and Advanced Topics in Relation Algebras (Springer, 2017), Duality Theories for Boolean Algebras with Operators (Springer, 2014), Introduction to Boolean Algebras, with Paul Halmos (Springer, 2009), Logic as Algebra, with Paul Halmos (MAA, 1998), and A Formalization of Set Theory without Variables, with Alfred Tarski (AMS, 1987). He was also a coeditor, with Ralph McKenzie, of the collected papers of Alfred Tarski (Birkhäuser, 1986).
Hajnal Andréka is a Professor of Mathematics at the Alfréd Rényi Institute of Mathematics in the Hungarian Academy of Sciences. She has been a prominent figure in the development of relation algebra theory since the 1970s and won the prestigious Alfréd Rényi Prize in 1987. Her other books include Universal Algebraic Logic, with István Németi and Ildikó Sain (Birkhäuser, 2017), Decision Problems for Equational Theories of Relation Algebras, with Steven Givant and István Németi (AMS, 1997), and Cylindric Set Algebras, with Leon Henkin, J. Donald Monk, Alfred Tarski, and István Németi (Springer, 1981).
Steven Givant is a Professor of Mathematics and Computer Science at Mills College, California. As a long-term collaborator of Alfred Tarski—one of the great logicians—Givant has been involved first-hand in the development of the field of relation algebras since the 1970s. His other books include Introduction to Relation Algebras and Advanced Topics in Relation Algebras (Springer, 2017), Duality Theories for Boolean Algebras with Operators (Springer, 2014), Introduction to Boolean Algebras, with Paul Halmos (Springer, 2009), Logic as Algebra, with Paul Halmos (MAA, 1998), and A Formalization of Set Theory without Variables, with Alfred Tarski (AMS, 1987). He was also a coeditor, with Ralph McKenzie, of the collected papers of Alfred Tarski (Birkhäuser, 1986). Hajnal Andréka is a Professor of Mathematics at the Alfréd Rényi Institute of Mathematics in the Hungarian Academy of Sciences. She has been a prominent figure in the development of relation algebra theory since the 1970s and won the prestigious Alfréd Rényi Prize in 1987. Her other books include Universal Algebraic Logic, with István Németi and Ildikó Sain (Birkhäuser, 2017), Decision Problems for Equational Theories of Relation Algebras, with Steven Givant and István Németi (AMS, 1997), and Cylindric Set Algebras, with Leon Henkin, J. Donald Monk, Alfred Tarski, and István Németi (Springer, 1981).
Preface.- 1. Rectangular Semiproducts.- 2. Equivalence Semiproducts.- 3. Diagonal Semiproducts.- 4. Semipowers.- 5. Simple Closures.- 6. Quasi-bijective Relation Algebras.- 7. Quotient Relations Algebras and Equijections.- 8. Quotient Semiproducts.- 9. Group and Geometric Quotient Semiproducts.- 10. Insertion Semiproducts.- 11. Two-quasi-bijective Relation Algebras.- A. Relation Algebras.- B. Geometry.- C. Selected Hints to Exercises.- References.
Erscheint lt. Verlag | 9.1.2018 |
---|---|
Zusatzinfo | XXIV, 622 p. 52 illus., 35 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Insertion semiproducts • Quotient algebras • Quotient semiproducts • Relation algebras • Semipowers • Semiproducts • Simple closures • Simple relation algebras |
ISBN-10 | 3-319-67696-2 / 3319676962 |
ISBN-13 | 978-3-319-67696-8 / 9783319676968 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 9,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich