Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
Springer International Publishing (Verlag)
978-3-319-75237-2 (ISBN)
This book constitutes revised selected papers from the Third International MICCAI Brainlesion Workshop, BrainLes 2017, as well as the International Multimodal Brain Tumor Segmentation, BraTS, and White Matter Hyperintensities, WMH, segmentation challenges, which were held jointly at the Medical Image computing for Computer Assisted Intervention Conference, MICCAI, in Quebec City, Canada, in September 2017.
The 40 papers presented in this volume were carefully reviewed and selected from 46 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; and ischemic stroke lesion image segmentation.
Invited Talks.- Dice overlap measures for objects of unknown number: Application to lesion segmentation.- Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials.- Brain Lesion Image Analysis.- Automated Segmentation of Multiple Sclerosis Lesions using Multi-Dimensional Gated Recurrent Units.- Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.- MARCEL (inter-Modality Ane Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection.- Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks.- Overall Survival Time Prediction for High Grade Gliomas based on Sparse Representation Framework.- Traumatic Brain Lesion Quantication based on Mean Diusivity Changes.- Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries.- Sub-Acute & Chronic Ischemic Stroke Lesion MRI Segmentation.- Brain Tumor Segmentation Using an Adversarial Network.- Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.- Brain Tumor Image Segmentation.- Deep Learning based Multimodal Brain Tumor Diagnosis.- Multimodal Brain Tumor Segmentation using Ensemble of Forest Method.- Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation.- Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks.- 3D Brain Tumor Segmentation through Integrating Multiple 2D FCNNs.- MRI Brain Tumor Segmentation and Patient Survival Prediction using Random Forests and Fully Convolutional Networks.- Automatic Segmentation and Overall Survival Prediction in Gliomas using Fully Convolutional Neural Network and Texture Analysis.- Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks.- A Conditional Adversarial Network for SemanticSegmentation of Brain Tumor.- Dilated Convolutions for Brain Tumor Segmentation in MRI Scans.- Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation.- TPCNN: Two-phase Patch-based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction.- Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge.- Multi-modal PixelNet for Brain Tumor Segmentation.- Brain Tumor Segmentation using Dense Fully Convolutional Neural Network.- Brain Tumor Segmentation in MRI Scans using Deeply-Supervised Neural Networks.- Brain Tumor Segmentation and Parsing on MRIs using Multiresolution Neural Networks.- Brain Tumor Segmentation using Deep Fully Convolutional Neural Networks.- Glioblastoma and Survival Prediction.- MRI Augmentation via Elastic Registration for Brain Lesions Segmentation.- Cascaded V-Net using ROI masks for brain tumor segmentation.- Brain Tumor Segmentation using a 3D FCN with Multi-Scale Loss.- Brain tumor segmentation using a multi-path CNN based method.- 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences.- Automated Brain Tumor Segmentation on Magnetic Resonance Images (MRIs) and Patient Overall Survival Prediction using Support Vector Machines.- Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation.- Tumor segmentation from multimodal MRI using random forest with superpixel and tensor based feature extraction.- Towards Uncertainty-assisted Brain Tumor Segmentation and Survival Prediction.- Ischemic Stroke Lesion Image Segmentation.- WMH Segmentation Challenge: a Texture-based Classication Approach.- White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.
Erscheinungsdatum | 16.03.2018 |
---|---|
Reihe/Serie | Image Processing, Computer Vision, Pattern Recognition, and Graphics | Lecture Notes in Computer Science |
Zusatzinfo | XIII, 517 p. 233 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 796 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Schlagworte | Applications • Artificial Intelligence • automatic segmentations • biocommunications • classification • Computer Science • computer vision • conference proceedings • Cross-validation • decision trees • estimation • Image Analysis • Image Segmentation • Informatics • machine learning • mean square error • Medical Images • Neural networks • random forests • Regression Analysis • Regression model • Research • segmentation methods • Semantics • Support Vector Machines (SVM) |
ISBN-10 | 3-319-75237-5 / 3319752375 |
ISBN-13 | 978-3-319-75237-2 / 9783319752372 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich