Parameter Estimation in Fractional Diffusion Models (eBook)

eBook Download: PDF
2018 | 1st ed. 2017
XIX, 390 Seiten
Springer International Publishing (Verlag)
978-3-319-71030-3 (ISBN)

Lese- und Medienproben

Parameter Estimation in Fractional Diffusion Models - Kęstutis Kubilius, Yuliya Mishura, Kostiantyn Ralchenko
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is 'white,' i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides simple and suitable parameter estimation methods in these models, making it a valuable resource for all researchers in this field. 

The book is addressed to specialists and researchers in the theory and statistics of stochastic processes, practitioners who apply statistical methods of parameter estimation, graduate and post-graduate students who study mathematical modeling and statistics.



Prof. Kęstutis Kubilius received his Ph.D. in mathematics at Vilnius University in 1981. Currently he is a professor of mathematics at the same university. His research work mainly focuses on limit theorems for semimartingales, theory of stochastic differential equations, and parameter estimation for fractional diffusion processes. He is the  author of more than 50 published papers.

Prof. Yuliya Mishura received her Ph.D. in probability and statistics at Kyiv University in 1978 and received her postdoctoral degree in probability and statistics (habilitation) in 1990. She is currently a professor at Taras Shevchenko National University of Kyiv. She is the author of more than 250 research papers and 6 books. Her  research interests include theory and statistics of stochastic processes, fractional processes, stochastic analysis and financial mathematics.

Dr. Kostiantyn Ralchenko is a postdoctoral researcher at the Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, where he also completed his Ph.D. in mathematics in 2012. His research interests include stochastic differential equations, fractional and multifractional processes, and statistics of stochastic processes. He is the author of 24 papers.

Prof. Kęstutis Kubilius received his Ph.D. in mathematics at Vilnius University in 1981. Currently he is a professor of mathematics at the same university. His research work mainly focuses on limit theorems for semimartingales, theory of stochastic differential equations, and parameter estimation for fractional diffusion processes. He is the  author of more than 50 published papers. Prof. Yuliya Mishura received her Ph.D. in probability and statistics at Kyiv University in 1978 and received her postdoctoral degree in probability and statistics (habilitation) in 1990. She is currently a professor at Taras Shevchenko National University of Kyiv. She is the author of more than 250 research papers and 6 books. Her  research interests include theory and statistics of stochastic processes, fractional processes, stochastic analysis and financial mathematics. Dr. Kostiantyn Ralchenko is a postdoctoral researcher at the Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, where he also completed his Ph.D. in mathematics in 2012. His research interests include stochastic differential equations, fractional and multifractional processes, and statistics of stochastic processes. He is the author of 24 papers.

1 Description and properties of the basic stochastic models.- 2 The Hurst index estimators for a fractional Brownian motion.- 3 Estimation of the Hurst index from the solution of a stochastic differential equation.- 4 Parameter estimation in the mixed models via power variations.- 5 Drift parameter estimation in diffusion and fractional diffusion models.- 6 The extended Orey index for Gaussian processes.- 7 Appendix A: Selected facts from mathematical and functional analysis.- 8 Appendix B: Selected facts from probability, stochastic processes and stochastic calculus.

Erscheint lt. Verlag 4.1.2018
Reihe/Serie Bocconi & Springer Series
Bocconi & Springer Series
Zusatzinfo XIX, 390 p. 17 illus., 2 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Diffusion model with memory • Fractional Brownian motion • Hurst Parameter • Orey index • Parameter Estimation
ISBN-10 3-319-71030-3 / 3319710303
ISBN-13 978-3-319-71030-3 / 9783319710303
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich