Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression
Springer Verlag, Singapore
978-981-10-8224-5 (ISBN)
In light of this, the present book explores the possibility of anchoring motion at reference frames instead. Key to the success of the proposed “reference-based” anchoring schemes is high quality motion inference, which is enabled by the use of a more “physical” motion representation than the traditionally employed “block” motion fields. The resulting compression system can support computationally efficient, high-quality temporal motion inference, which requires half as many coded motion fields as conventional codecs. Furthermore, “features” beyond compressibility — including high scalability, accessibility, and “intrinsic” framerate upsampling — can be seamlessly supported. These features are becoming ever more relevant as the way video is consumed continues shifting from the traditional broadcast scenario to interactive browsing of video content over heterogeneous networks.
This book is of interest to researchers and professionals working in multimedia signal processing, in particular those who are interested in next-generation video compression. Two comprehensive background chapters on scalable video compression and temporal frame interpolation make the book accessible for students and newcomers to the field.
Dominic Ruefenacht received his B.Sc. and M.Sc. in Communication Systems with a specialization in ‘Signals, Images and Interfaces’ from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, in 2009 and 2011. He was an exchange student at the University of Waterloo, Ontario, Canada, and did his Master's thesis at Philips Consumer Lifestyle in Eindhoven, Netherlands. He obtained his Ph.D. degree from UNSW Sydney, Australia, in 2017, where he was investigating “Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression”. From 2011 to 2013, he was with the Image and Visual Representation Group (IVRG) at EPFL as a research engineer, where he was working on computational photography problems, with emphasis on near-infrared imaging. He currently holds a post-doctoral position at UNSW Sydney, working on next-generation video compression systems. His research interests are in computational photography and highly scalable and accessible video compression, with a focus on temporal scalability.
Introduction.- Scalable Image and Video Compression.- Temporal Frame Interpolation (TFI).- Motion-Discontinuity-Aided Motion Field Operations.- Bidirectional Hierarchical Anchoring (BIHA) of Motion.- Forward-Only Hierarchical Anchoring (FOHA) of Motion.- Base-Anchored Motion (BAM).- Conclusions and Future Directions.
Erscheinungsdatum | 14.04.2018 |
---|---|
Reihe/Serie | Springer Theses |
Zusatzinfo | 62 Illustrations, color; 30 Illustrations, black and white; XXIII, 182 p. 92 illus., 62 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Base-Anchored Motion (BAM) • Bidirectional Hierarchical Anchoring (BIHA) • Disocclusion and Folding Likelihood Map (DFLM) • Forward-Only Hierarchical Anchoring (FOHA) • Optical Blur Synthesis • Scalable Image • Selective Wavelet Coefficient Attenuation (SWCA) • Temporal Frame Interpolation (TFI) • Texture Optimizations • Wavelet-based Highly Scalable Video Compression (WSVC) |
ISBN-10 | 981-10-8224-3 / 9811082243 |
ISBN-13 | 978-981-10-8224-5 / 9789811082245 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich