Introduction to Hilbert Space and the Theory of Spectral Multiplicity (eBook)

Second Edition
eBook Download: EPUB
2017
128 Seiten
Dover Publications (Verlag)
978-0-486-82683-7 (ISBN)

Lese- und Medienproben

Introduction to Hilbert Space and the Theory of Spectral Multiplicity -  Paul R. Halmos
Systemvoraussetzungen
14,06 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.
This concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. Author Paul R. Halmos notes in the Preface that his motivation in writing this text was to make available to a wider audience the results of the third chapter, the so-called multiplicity theory. The theory as he presents it deals with arbitrary spectral measures, including the multiplicity theory of normal operators on a not necessarily separable Hilbert space. His explication covers, as another useful special case, the multiplicity theory of unitary representations of locally compact abelian groups.Suitable for advanced undergraduates and graduate students in mathematics, this volume's sole prerequisite is a background in measure theory. The distinguished mathematician E. R. Lorch praised the book in the Bulletin of the American Mathematical Society as "e;an exposition which is always fresh, proofs which are sophisticated, and a choice of subject matter which is certainly timely."e;

Hungarian-born Paul R. Halmos (1916–2006) is widely regarded as a top-notch expositor of mathematics. He taught at the University of Chicago and the University of Michigan as well as other universities and made significant contributions to several areas of mathematics, including mathematical logic, probability theory, ergodic theory, and functional analysis.

Preface0. Prerequisites and Notation  CHAPTER I: The Geometry of Hilbert Space1. Linear Functionals2. Bilinear Functionals3. Quadratic Forms4. Inner Product and Norm5. The Inequalities of Bessel and Schwarz6. Hilbert Space7. Infinite Sums8. Conditions for Summability9. Examples of Hilbert Spaces10. Subspaces11. Vectors in and out of Subspaces12. Orthogonal Complements13. Vector Sums14. Bases15. A Non-closed Vector Sum16. Dimension17. Boundedness18. Bounded Bilinear Functionals CHAPTER II: The Algebra of Operators19. Operators20. Examples of Operators21. Inverses22. Adjoints23. Invariance24. Hermitian Operators25. Normal and Unitary Operators26. Projections27. Projections and Subspaces28. Sums of Projections29. Products and Differences of Projections30. Infima and Suprema of Projections31. The Spectrum of an Operator32. Compactness of Spectra33. Transforms of Spectra34. The Spectrum of a Hermitian Operator35. Spectral Heuristics36. Spectral Measures37. Spectral Integrals38. Regular Spectral Measures39. Real and Complex Spectral Measures40. Complex Spectral Integrals41. Description of the Spectral Subspaces42. Characterization of the Spectral Subspaces43. The Spectral Theorem for Hermitian Operators44. The Spectral Theorem for Normal Operators CHAPTER III: The Analysis of Spectral Measures45. The Problem of Unitary Equivalence46. Multiplicity Functions in Finite-dimensional Spaces47. Measures48. Boolean Operations on Measures49. Multiplicity Functions50. The Canonical Example of a Spectral Measure51. Finite-dimensional Spectral Measures52. Simple Finite-dimensional Spectral Measures53. The Commutator of a Set of Projections54. Pairs of Commutators55. Columns56. Rows57. Cycles58. Separable Projections59. Characterizations of Rows60. Cycles and Rows61. The Existence of Rows62. Orthogonal Systems63. The Power of a Maximal Orthogonal System64. Multiplicities65. Measures from Vectors66. Subspaces from Measures67. The Multiplicity Function of a Spectral Measure68. ConclusionReferencesBibliography

Erscheint lt. Verlag 15.11.2017
Reihe/Serie Dover Books on Mathematics
Sprache englisch
Maße 150 x 150 mm
Gewicht 187 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Analysis of Spectral Measures • Bilinear Functionals • Boollean Operations on Measures • Bounded Bilinear Functionals • Hermitian Operators • hilbert space • infinite sums • linear functionals • math history, geometry of hilbert space, algebra of operators, analysis of spectral measures, multiplicity theory, spectral multiplicity, arbitrary spectral measures, unitary representations, abelian groups, advanced mathematics, undergraduate math, graduate level math, measure theory, math exposition • Multiplicity Functions • quadratic forms • Spectral Heuristics • Spectral Integrals • The Algebra of Operators
ISBN-10 0-486-82683-X / 048682683X
ISBN-13 978-0-486-82683-7 / 9780486826837
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich