Predictive Analytics with TensorFlow (eBook)

Implement deep learning principles to predict valuable insights using TensorFlow
eBook Download: EPUB
2017
522 Seiten
Packt Publishing (Verlag)
978-1-78839-012-5 (ISBN)

Lese- und Medienproben

Predictive Analytics with TensorFlow - Md. Rezaul Karim
Systemvoraussetzungen
45,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Accomplish the power of data in your business by building advanced predictive modelling applications with Tensorflow.

About This Book

  • A quick guide to gain hands-on experience with deep learning in different domains such as digit/image classification, and texts
  • Build your own smart, predictive models with TensorFlow using easy-to-follow approach mentioned in the book
  • Understand deep learning and predictive analytics along with its challenges and best practices

Who This Book Is For

This book is intended for anyone who wants to build predictive models with the power of TensorFlow from scratch. If you want to build your own extensive applications which work, and can predict smart decisions in the future then this book is what you need!

What You Will Learn

  • Get a solid and theoretical understanding of linear algebra, statistics, and probability for predictive modeling
  • Develop predictive models using classification, regression, and clustering algorithms
  • Develop predictive models for NLP
  • Learn how to use reinforcement learning for predictive analytics
  • Factorization Machines for advanced recommendation systems
  • Get a hands-on understanding of deep learning architectures for advanced predictive analytics
  • Learn how to use deep Neural Networks for predictive analytics
  • See how to use recurrent Neural Networks for predictive analytics
  • Convolutional Neural Networks for emotion recognition, image classification, and sentiment analysis

In Detail

Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision-making in business intelligence.

This book will help you build, tune, and deploy predictive models with TensorFlow in three main sections. The first section covers linear algebra, statistics, and probability theory for predictive modeling.

The second section covers developing predictive models via supervised (classification and regression) and unsupervised (clustering) algorithms. It then explains how to develop predictive models for NLP and covers reinforcement learning algorithms. Lastly, this section covers developing a factorization machines-based recommendation system.

The third section covers deep learning architectures for advanced predictive analytics, including deep neural networks and recurrent neural networks for high-dimensional and sequence data. Finally, convolutional neural networks are used for predictive modeling for emotion recognition, image classification, and sentiment analysis.

Style and approach

TensorFlow, a popular library for machine learning, embraces the innovation and community-engagement of open source, but has the support, guidance, and stability of a large corporation.


Accomplish the power of data in your business by building advanced predictive modelling applications with Tensorflow.About This BookA quick guide to gain hands-on experience with deep learning in different domains such as digit/image classification, and textsBuild your own smart, predictive models with TensorFlow using easy-to-follow approach mentioned in the bookUnderstand deep learning and predictive analytics along with its challenges and best practicesWho This Book Is ForThis book is intended for anyone who wants to build predictive models with the power of TensorFlow from scratch. If you want to build your own extensive applications which work, and can predict smart decisions in the future then this book is what you need!What You Will LearnGet a solid and theoretical understanding of linear algebra, statistics, and probability for predictive modelingDevelop predictive models using classification, regression, and clustering algorithmsDevelop predictive models for NLPLearn how to use reinforcement learning for predictive analyticsFactorization Machines for advanced recommendation systemsGet a hands-on understanding of deep learning architectures for advanced predictive analyticsLearn how to use deep Neural Networks for predictive analyticsSee how to use recurrent Neural Networks for predictive analyticsConvolutional Neural Networks for emotion recognition, image classification, and sentiment analysisIn DetailPredictive analytics discovers hidden patterns from structured and unstructured data for automated decision-making in business intelligence.This book will help you build, tune, and deploy predictive models with TensorFlow in three main sections. The first section covers linear algebra, statistics, and probability theory for predictive modeling.The second section covers developing predictive models via supervised (classification and regression) and unsupervised (clustering) algorithms. It then explains how to develop predictive models for NLP and covers reinforcement learning algorithms. Lastly, this section covers developing a factorization machines-based recommendation system.The third section covers deep learning architectures for advanced predictive analytics, including deep neural networks and recurrent neural networks for high-dimensional and sequence data. Finally, convolutional neural networks are used for predictive modeling for emotion recognition, image classification, and sentiment analysis.Style and approachTensorFlow, a popular library for machine learning, embraces the innovation and community-engagement of open source, but has the support, guidance, and stability of a large corporation.
Erscheint lt. Verlag 2.11.2017
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Web / Internet
ISBN-10 1-78839-012-1 / 1788390121
ISBN-13 978-1-78839-012-5 / 9781788390125
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 10,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93