Python Machine Learning Case Studies - Danish Haroon

Python Machine Learning Case Studies (eBook)

Five Case Studies for the Data Scientist

(Autor)

eBook Download: PDF
2017 | 1st ed.
XVII, 204 Seiten
Apress (Verlag)
978-1-4842-2823-4 (ISBN)
Systemvoraussetzungen
79,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources.

Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You'll see machine learning techniques that you can use to support your products and services. Moreover you'll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs.

By taking a step-by-step approach to coding in Python you'll be able to understand
the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems.
What You Will Learn

  • Gain insights into machine learning concepts 
  • Work on real-world applications of machine learning
  • Learn concepts of model selection and optimization
  • Get a hands-on overview of Python from a machine learning point of view

Who This Book Is For

Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.




Danish Haroon currently leads the Data Sciences team at Market IQ Inc, a patented predictive analytics platform focused on providing actionable, real-time intelligence, culled from sentiment inflection points. He received his MBA from Karachi School for Business and Leadership, having served corporate clients and their data analytics requirements. Most recently, he led the data commercialization team at PredictifyME, a startup focused on providing predictive analytics for demand planning and real estate markets in the US market. His current research focuses on the amalgam of data sciences for improved customer experiences (CX).
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources.Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You'll see machine learning techniques that you can use to support your products and services. Moreover you'll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs.By taking a step-by-step approach to coding in Python you'll be able to understand the rationale behind model selection and decisions within the machine learning process. The bookis equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems.What You Will LearnGain insights into machine learning concepts Work on real-world applications of machine learningLearn concepts of model selection and optimizationGet a hands-on overview of Python from a machine learning point of viewWho This Book Is ForData scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Danish Haroon currently leads the Data Sciences team at Market IQ Inc, a patented predictive analytics platform focused on providing actionable, real-time intelligence, culled from sentiment inflection points. He received his MBA from Karachi School for Business and Leadership, having served corporate clients and their data analytics requirements. Most recently, he led the data commercialization team at PredictifyME, a startup focused on providing predictive analytics for demand planning and real estate markets in the US market. His current research focuses on the amalgam of data sciences for improved customer experiences (CX).

Chapter 1:  Statistics and ProbabilityChapter Goal: Introduction and hands on approach to central limit theorem, distributions, confidence intervals, statistical tests, ROC curves, plots, probabilities, permutations and combinationsNo of pages: 70-80Sub –Topics1. Exploratory Data analysis2. Probability Distributions3. Concept of Permutations and Combinations4. Statistical tests5. Applications in the industry6. Case studyChapter 2:  RegressionChapter Goal: Introduction and hands on approach to the concept of regression, linear regression models, non linear regression models.No of pages: 50-60Sub – Topics1. Concept of Regression2. Linear regression3. Polynomial order regression4. Statistical tests5. Applications in the industry6. Case study<Chapter 3: Time series modelsChapter Goal: Introduction and hands on approach to concepts of trends, cycles, seasonal variations, anomaly detection, exponential smoothing, rolling moving averages, ARIMA, ARMA, over fitting.No of pages: 60-70Sub - Topics:1. Concept of trends, cycles, and seasonal variations2. Time series decomposition3. ARIMA, and ARMA models4. Concept of over fitting5. Statistical tests6. Applications in the industry7. Case studyChapter 4: Classification and ClusteringChapter Goal: Introduction and hands on approach to supervised, semi supervised and unsupervised models. Emphasis on Logistic regression, k-means, Support Vector Machines, Neural networksNo of pages: 80-90Sub - Topics:1. Concept of Classification and clustering2. Deep neur3. Support Vector Machines4. Concept of Gradient descent5. Statistical tests6. Applications in the industry7. Case studyChapter 5: Ensemble methodsChapter Goal: Introduction and hands on approach to Bagging, and Gradient BoostingNo of pages: 50-60Sub - Topics:1. Concept of ensemble methods2. Concept of Bagging 3. Concept of Gradient Boosting4. Statistical tests5. Applications in the industry6. Case study

Erscheint lt. Verlag 27.10.2017
Zusatzinfo XVII, 204 p. 120 illus., 99 illus. in color.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Schlagworte bagging • Clustering • Data Analysys • Machine Leraning • Python • Regression • Time series modelling
ISBN-10 1-4842-2823-5 / 1484228235
ISBN-13 978-1-4842-2823-4 / 9781484228234
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68