Modeling, Simulation, and Control of a Medium-Scale Power System -  Tharangika Bambaravanage,  Sisil Kumarawadu,  Asanka Rodrigo

Modeling, Simulation, and Control of a Medium-Scale Power System (eBook)

eBook Download: PDF
2017 | 1st ed. 2018
XXVI, 175 Seiten
Springer Singapore (Verlag)
978-981-10-4910-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book highlights the most important aspects of mathematical modeling, computer simulation, and control of medium-scale power systems. It discusses a number of practical examples based on Sri Lanka's power system, one characterized by comparatively high degrees of variability and uncertainty. Recently introduced concepts such as controlled disintegration to maintain grid stability are discussed and studied using simulations of practical scenarios. 

Power systems are complex, geographically distributed, dynamical systems with numerous interconnections between neighboring systems. Further, they often comprise a generation mix that includes hydro, thermal, combined cycle, and intermittent renewable plants, as well as considerably extended transmission lines. Hence, the detailed analysis of their transient behaviors in the presence of disturbances is both highly theory-intensive and challenging in practice. Effectively regulating and controlling power
system behavior to ensure consistent service quality and transient stability requires the use of various schemes and systems. 

The book's initial chapters detail the fundamentals of power systems; in turn, system modeling and simulation results using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) software are presented and compared with available real-world data. Lastly, the book uses computer simulation studies under a variety of practical contingency scenarios to compare several under-frequency load-shedding schemes. Given the breadth and depth of its coverage, it offers a truly unique resource on the management of medium-scale power systems.



Tharangika Bambaravanage obtained her B.Sc. (Engineering), M.Eng. in Electrical Engineering and M.Phil. in Power System Stability and Control from the University of Moratuwa, respectively, in 1998, 2005 and 2017. She has been a senior lecturer at the Institute of Technology, University of Moratuwa, since 2017.

Asanka Rodrigo obtained his BSc(Hons) and MSc in Electrical Engineering, respectively, in 2002 and 2004, from University of Moratuwa, and PhD in Industrial Engineering from Hong Kong University of Science and Technology in 2010. He has been a senior lecturer in Electrical Engineering at the Faculty of Engineering of University of Moratuwa since 2010. 

Sisil Kumarawadu obtained his BSc(Hons) in Electrical Engineering from University of Moratuwa in 1996. He obtained his MEng in advanced Systems Control Engineering and PhD in Robotics and Intelligent Systems in 2000 and 2003, respectively, from Saga
National University, Japan. From April 2003 to July 2005, he was with Intelligent Transportation Systems Research Center, NCTU, Taiwan, as a postdoctoral research fellow. Currently, he is a professor in electrical engineering at University of Moratuwa.
This book highlights the most important aspects of mathematical modeling, computer simulation, and control of medium-scale power systems. It discusses a number of practical examples based on Sri Lanka's power system, one characterized by comparatively high degrees of variability and uncertainty. Recently introduced concepts such as controlled disintegration to maintain grid stability are discussed and studied using simulations of practical scenarios. Power systems are complex, geographically distributed, dynamical systems with numerous interconnections between neighboring systems. Further, they often comprise a generation mix that includes hydro, thermal, combined cycle, and intermittent renewable plants, as well as considerably extended transmission lines. Hence, the detailed analysis of their transient behaviors in the presence of disturbances is both highly theory-intensive and challenging in practice. Effectively regulating and controlling powersystem behavior to ensure consistent service quality and transient stability requires the use of various schemes and systems. The book's initial chapters detail the fundamentals of power systems; in turn, system modeling and simulation results using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) software are presented and compared with available real-world data. Lastly, the book uses computer simulation studies under a variety of practical contingency scenarios to compare several under-frequency load-shedding schemes. Given the breadth and depth of its coverage, it offers a truly unique resource on the management of medium-scale power systems.

Tharangika Bambaravanage obtained her B.Sc. (Engineering), M.Eng. in Electrical Engineering and M.Phil. in Power System Stability and Control from the University of Moratuwa, respectively, in 1998, 2005 and 2017. She has been a senior lecturer at the Institute of Technology, University of Moratuwa, since 2017.Asanka Rodrigo obtained his BSc(Hons) and MSc in Electrical Engineering, respectively, in 2002 and 2004, from University of Moratuwa, and PhD in Industrial Engineering from Hong Kong University of Science and Technology in 2010. He has been a senior lecturer in Electrical Engineering at the Faculty of Engineering of University of Moratuwa since 2010. Sisil Kumarawadu obtained his BSc(Hons) in Electrical Engineering from University of Moratuwa in 1996. He obtained his MEng in advanced Systems Control Engineering and PhD in Robotics and Intelligent Systems in 2000 and 2003, respectively, from Saga National University, Japan. From April 2003 to July 2005, he was with Intelligent Transportation Systems Research Center, NCTU, Taiwan, as a postdoctoral research fellow. Currently, he is a professor in electrical engineering at University of Moratuwa.

1.INTRODUCTION 2.FUNDAMENTALS OF ELECTRICAL POWER SYSTEMS 2.1.Structure of an Electrical Power System2.2.Power System Stability                                                                                                                          2.3.Why Power System Instability situations occur?                                                                             2.4.Disturbances                                                                                                                                      2.4.1. Effects of the Disturbances on the Power System                                                                             2.4.1.1.Effects on power system due to Generation Unit failures                                                 2.4.1.2.Effect on PS due to Transmission line outages                                                                2.5.Reliability of a power system                                                                                                         2.6.Quality of a power system                                                                                                         2.6.1.Addressing instability situations due to perturbations in the power system                                 2.6.2.Classification of Power System Dynamics                                                                            2.6.3 Process for Generation-Load Balance                                                                                           2.6.1.Primary control (is by Governors)                                                                                           2.6.2.Secondary control (is by Automatic Generation Controls)                                           2.6.2.1.Governor Control System                                                                                           2.6.2.2.Interconnected Operations                                                                                           2.6.3.Tertiary control                                                                                                                                       2.6.4.Time control                                                                                                                                       2.6.4.1.Area Control Error (ACE)                                                                                            2.6.4.2.Time Error                                                                                                                         2.7.Under-frequency Load shedding3.MATHEMATICAL MODELLING OF THE POWER SYSTEM   3.1.Power System Components                                                                                                           3.2.Configuring Power System Components / Mathematical Modeling                                3.2.1.Transmission Lines                                                                                                                         3.2.1.1.Conductor types available in the Power System                                                               3.2.1.2.Sample Calculation                                                                                                           3.2.1.3.Values Used with PSCAD window                                                                             3.2.2. Under-ground Cables                                                                                                                    3.2.2.1.Cable types available in the Power System                                                          3.2.2.2.Values Used with PSCAD window                                                                        3.2.3. Transformers 3.2.3.1.Transformer types available in the Power System 3.2.3.2.Sample Calculation 3.2.3.3.Values Used with PSCAD window 3.2.4. Generators 3.2.4.1.Generator types used in modeling the Power System 3.2.4.2.Simplified Schematic Diagram and corresponding control System 3.2.4.3.Values Used with PSCAD window 3.2.4.4.Sample Calculation 3.2.5. Exciters 3.2.5.1.Exciter types used in modeling the Power System 3.2.5.2.Simplified Schematic Diagram and corresponding control System 3.2.5.3.Sample Calculation 3.2.5.4.Values Used with PSCAD window 3.2.6. Turbines 3.2.6.1.Turbine types used in modeling the Power System 3.2.6.2.Steam turbines 3.2.6.3.Simplified Schematic Diagram and corresponding control System of Steam turbine3.2.6.4.Values Used with PSCAD window 3.2.6.5.Hydro turbines 3.2.6.6.Values Used with PSCAD window 3.2.7. Governors 3.2.7.1.Governor types used in modeling the Power System 3.2.7.2.Simplified Schematic Diagram and corresponding control System 3.2.7.3.Values Used with PSCAD window 3.3.Control system of the overall Power System 3.3.1.LS Logic1 control system module 3.3.2.U_Frequency control system module 3.3.3.Add_Ld control system module 3.4.Verifying the simulation model performance 3.4.1.Steady state operation 3.4.2.Generator tripping/ Sudden generation deficit situation4.POWER SYSTEM STABILITY AND CONTROL 4.1.Identification of Parameters 4.1.1.Power System regulations and Practice of Sri Lanka 4.1.2.Identifying Settling Frequency 4.1.3.Deciding the number of steps in the Load Shedding Scheme 4.1.4.First step of Load Shedding Scheme 4.1.5.Identifying when to implement Load shedding based on rate of change of frequency (ROCOF)4.1.6.Delay time 4.1.7.Ahsans’ scheme as a pilot model [56] 4.1.8.Proposed Methodology 4.1.8.1.Load Shedding Scheme – I (Based on prevailing facilities available with the CEB)4.1.8.2.Load Shedding Scheme – II (Based on Disintegration of the Power System) 5.COMPUTER NUMERICAL SIMULATIONS 5.1.Discussion: Load Shedding Scheme – I with generation deficit of 829.6 MW 5.2.Discussion: Load Shedding Scheme – II with generation deficit of 495.14 MW 5.2.1.Performance of the national grid: 5.2.2.Performance of Island Rantembe: 5.2.3.Performance of Island Matugama 5.2.4.Performance of Island Embilipitiya 5.2.5.Performance of Island Kiribathkumbura 5.3.Performance comparison on selected Load Shedding Schemes (LSS) REFERENCES APPENDICES APPENDIX – I APPENDIX – II APPENDIX – III APPENDIX – IV APPENDIX – V APPENDIX – VI 

Erscheint lt. Verlag 17.10.2017
Reihe/Serie Power Systems
Zusatzinfo XXVI, 175 p. 129 illus., 81 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Ahsans’ Scheme • Area Control Error (ACE) • Generation Unit Failures • Generator Tripping • Governor Control System • Load Shedding Schemes • Power System Dynamics • Power System Stability • PSCAD Window • Sri Lanka Power System • Steam turbines • Under-frequency Load Shedding
ISBN-10 981-10-4910-6 / 9811049106
ISBN-13 978-981-10-4910-1 / 9789811049101
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A practical guide to probabilistic modeling

von Osvaldo Martin

eBook Download (2024)
Packt Publishing Limited (Verlag)
35,99
Discover tactics to decrease churn and expand revenue

von Peter Armaly; Jeff Mar

eBook Download (2024)
Packt Publishing Limited (Verlag)
25,19
Unleash citizen-driven innovation with the power of hackathons

von Love Dager; Carolina Emanuelson; Ann Molin; Mustafa Sherif …

eBook Download (2024)
Packt Publishing Limited (Verlag)
35,99